Handbook of Automotive Power Electronics and Motor Drives

Handbook of Automotive Power Electronics and Motor Drives

Author: Ali Emadi

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 736

ISBN-13: 1420028154

DOWNLOAD EBOOK

Initially, the only electric loads encountered in an automobile were for lighting and the starter motor. Today, demands on performance, safety, emissions, comfort, convenience, entertainment, and communications have seen the working-in of seemingly innumerable advanced electronic devices. Consequently, vehicle electric systems require larger capacities and more complex configurations to deal with these demands. Covering applications in conventional, hybrid-electric, and electric vehicles, the Handbook of Automotive Power Electronics and Motor Drives provides a comprehensive reference for automotive electrical systems. This authoritative handbook features contributions from an outstanding international panel of experts from industry and academia, highlighting existing and emerging technologies. Divided into five parts, the Handbook of Automotive Power Electronics and Motor Drives offers an overview of automotive power systems, discusses semiconductor devices, sensors, and other components, explains different power electronic converters, examines electric machines and associated drives, and details various advanced electrical loads as well as battery technology for automobile applications. As we seek to answer the call for safer, more efficient, and lower-emission vehicles from regulators and consumer insistence on better performance, comfort, and entertainment, the technologies outlined in this book are vital for engineering advanced vehicles that will satisfy these criteria.


Knowledge-Based Intelligent Information and Engineering Systems

Knowledge-Based Intelligent Information and Engineering Systems

Author: Bruno Apolloni

Publisher: Springer

Published: 2007-09-12

Total Pages: 1411

ISBN-13: 354074827X

DOWNLOAD EBOOK

Annotation The three volume set LNAI 4692, LNAI 4693, and LNAI 4694, constitute the refereed proceedings of the 11th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2007, held in Vietri sul Mare, Italy, September 12-14, 2007. The 409 revised papers presented were carefully reviewed and selected from about 1203 submissions. The papers present a wealth of original research results from the field of intelligent information processing in the broadest sense; topics covered in the first volume are artificial neural networks and connectionists systems, fuzzy and neuro-fuzzy systems, evolutionary computation, machine learning and classical AI, agent systems, knowledge based and expert systems, hybrid intelligent systems, miscellaneous intelligent algorithms, intelligent vision and image processing, knowledge management and ontologies, Web intelligence, multimedia, e-learning and teaching, intelligent signal processing, control and robotics, other intelligent systems applications, papers of the experience management and engineering workshop, industrial applications of intelligent systems, as well as information engineering and applications in ubiquotous computing environments.


Envelope Tracking Power Amplifiers for Wireless Communications

Envelope Tracking Power Amplifiers for Wireless Communications

Author: Zhancang Wang

Publisher: Artech House

Published: 2014-06-01

Total Pages: 363

ISBN-13: 1608077845

DOWNLOAD EBOOK

Envelope tracking technology is seen as the most promising efficiency enhancement technology for RF power amplifiers for 4G and beyond wireless communications. More and more organizations are investing and researching on this topic with huge potential in academic and commercial areas. This is the first book on the market to offer complete introduction, theory, and design considerations on envelope tracking for wireless communications. This resource presents you with a full introduction to the subject and covers underlying theory and practical design considerations.


Enabling Technologies for Very Large-Scale Synaptic Electronics

Enabling Technologies for Very Large-Scale Synaptic Electronics

Author: Themis Prodromakis

Publisher: Frontiers Media SA

Published: 2018-07-05

Total Pages: 105

ISBN-13: 2889455084

DOWNLOAD EBOOK

An important part of the colossal effort associated with the understanding of the brain involves using electronics hardware technology in order to reproduce biological behavior in ‘silico’. The idea revolves around leveraging decades of experience in the electronics industry as well as new biological findings that are employed towards reproducing key behaviors of fundamental elements of the brain (notably neurons and synapses) at far greater speed-scale products than any software-only implementation can achieve for the given level of modelling detail. So far, the field of neuromorphic engineering has proven itself as a major source of innovation towards the ‘silicon brain’ goal, with the methods employed by its community largely focused on circuit design (analogue, digital and mixed signal) and standard, commercial, Complementary Metal-Oxide Silicon (CMOS) technology as the preferred `tools of choice’ when trying to simulate or emulate biological behavior. However, alongside the circuit-oriented sector of the community there exists another community developing new electronic technologies with the express aim of creating advanced devices, beyond the capabilities of CMOS, that can intrinsically simulate neuron- or synapse-like behavior. A notable example concerns nanoelectronic devices responding to well-defined input signals by suitably changing their internal state (‘weight’), thereby exhibiting `synapse-like’ plasticity. This is in stark contrast to circuit-oriented approaches where the `synaptic weight’ variable has to be first stored, typically as charge on a capacitor or digitally, and then appropriately changed via complicated circuitry. The shift of very much complexity from circuitry to devices could potentially be a major enabling factor for very-large scale `synaptic electronics’, particularly if the new devices can be operated at much lower power budgets than their corresponding 'traditional' circuit replacements. To bring this promise to fruition, synergy between the well-established practices of the circuit-oriented approach and the vastness of possibilities opened by the advent of novel nanoelectronic devices with rich internal dynamics is absolutely essential and will create the opportunity for radical innovation in both fields. The result of such synergy can be of potentially staggering impact to the progress of our efforts to both simulate the brain and ultimately understand it. In this Research Topic, we wish to provide an overview of what constitutes state-of-the-art in terms of enabling technologies for very large scale synaptic electronics, with particular stress on innovative nanoelectronic devices and circuit/system design techniques that can facilitate the development of very large scale brain-inspired electronic systems


Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design

Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design

Author: Pieter Harpe

Publisher: Springer

Published: 2017-09-18

Total Pages: 358

ISBN-13: 3319612859

DOWNLOAD EBOOK

This book is based on the 18 tutorials presented during the 26th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, with specific contributions focusing on hybrid ADCs, smart sensors for the IoT, sub-1V and advanced-node analog circuit design. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.


Condition Monitoring and Faults Diagnosis of Induction Motors

Condition Monitoring and Faults Diagnosis of Induction Motors

Author: Nordin Saad

Publisher: CRC Press

Published: 2018-07-11

Total Pages: 150

ISBN-13: 1351172557

DOWNLOAD EBOOK

The book covers various issues related to machinery condition monitoring, signal processing and conditioning, instrumentation and measurements, faults for induction motors failures, new trends in condition monitoring, and the fault identification process using motor currents electrical signature analysis. It aims to present a new non-invasive and non-intrusive condition monitoring system, which has the capability to detect various defects in induction motor at incipient stages within an arbitrary noise conditions. The performance of the developed system has been analyzed theoretically and experimentally under various loading conditions of the motor. Covers current and new approaches applied to fault diagnosis and condition monitoring. Integrates concepts and practical implementation of electrical signature analysis. Utilizes LabVIEW tool for condition monitoring problems. Incorporates real-world case studies. Paves way a technology potentially for prescriptive maintenance via IIoT.