Ambitious Science Teaching

Ambitious Science Teaching

Author: Mark Windschitl

Publisher: Harvard Education Press

Published: 2020-08-05

Total Pages: 455

ISBN-13: 1682531643

DOWNLOAD EBOOK

2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.


Elementary Science Teacher Education

Elementary Science Teacher Education

Author: Ken Appleton

Publisher: Routledge

Published: 2013-12-16

Total Pages: 383

ISBN-13: 1135464170

DOWNLOAD EBOOK

Co-Published with the Association For Science Teacher Education. Reflecting recent policy and standards initiatives, emerging research agendas, and key innovations, this volume provides a contemporary overview of important developments and issues that have that have in recent years shaped elementary science education pre-service courses and professional development, and practices that are shaping future directions in the field. Contributors from several countries who are actively engaged in research and design in elementary science education address: *Conceptual issues which impinge on contemporary science teacher education; *Intersections of content, pedagogy, and practice; and *Professional development as a contextualized practice. Elementary Science Teacher Education: International Perspectives on Contemporary Issues and Practice offers a clear picture of the current state of the field and directions for the future--to the benefit of elementary science teacher educators, aspiring teacher educators, school policy makers, other professionals involved in science education and, ultimately, the millions of elementary school children who will gain from improved practice.


A Framework for K-12 Science Education

A Framework for K-12 Science Education

Author: National Research Council

Publisher: National Academies Press

Published: 2012-02-28

Total Pages: 400

ISBN-13: 0309214459

DOWNLOAD EBOOK

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.


How Students Learn

How Students Learn

Author: National Research Council

Publisher: National Academies Press

Published: 2005-01-23

Total Pages: 633

ISBN-13: 0309074339

DOWNLOAD EBOOK

How do you get a fourth-grader excited about history? How do you even begin to persuade high school students that mathematical functions are relevant to their everyday lives? In this volume, practical questions that confront every classroom teacher are addressed using the latest exciting research on cognition, teaching, and learning. How Students Learn: History, Mathematics, and Science in the Classroom builds on the discoveries detailed in the bestselling How People Learn. Now, these findings are presented in a way that teachers can use immediately, to revitalize their work in the classroom for even greater effectiveness. Organized for utility, the book explores how the principles of learning can be applied in teaching history, science, and math topics at three levels: elementary, middle, and high school. Leading educators explain in detail how they developed successful curricula and teaching approaches, presenting strategies that serve as models for curriculum development and classroom instruction. Their recounting of personal teaching experiences lends strength and warmth to this volume. The book explores the importance of balancing students' knowledge of historical fact against their understanding of concepts, such as change and cause, and their skills in assessing historical accounts. It discusses how to build straightforward science experiments into true understanding of scientific principles. And it shows how to overcome the difficulties in teaching math to generate real insight and reasoning in math students. It also features illustrated suggestions for classroom activities. How Students Learn offers a highly useful blend of principle and practice. It will be important not only to teachers, administrators, curriculum designers, and teacher educators, but also to parents and the larger community concerned about children's education.


Science Teachers' Learning

Science Teachers' Learning

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-01-15

Total Pages: 257

ISBN-13: 0309380189

DOWNLOAD EBOOK

Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.


Taking Science to School

Taking Science to School

Author: National Research Council

Publisher: National Academies Press

Published: 2007-04-16

Total Pages: 404

ISBN-13: 0309133831

DOWNLOAD EBOOK

What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.


Science Education Through Multiple Literacies

Science Education Through Multiple Literacies

Author: Joseph Krajcik

Publisher: Harvard Education Press

Published: 2022-10-18

Total Pages: 268

ISBN-13: 1682536645

DOWNLOAD EBOOK

Science Education Through Multiple Literacies explores how the use of project-based learning in elementary science education fosters a lifelong scientific mindset in students. The book provides educators with the teaching practices to help students develop an overall science literacy that aligns with Next Generation Science Standards. Editors Joseph Krajcik and Barbara Schneider and the book’s contributors offer a comprehensive overview of the multifaceted approach to science learning. Multiple Literacies in Project-Based Learning (ML-PBL) interweaves scientific ideas and practices, language literacy, and mathematical thinking. ML-PBL supports the teaching of science by paralleling what scientists do: it engages students and their teachers in investigating real-world questions, constructing models, and using evidence to evaluate claims. The book presents compelling case studies of ML-PBL, how teachers use this approach, and how the ML-PBL transforms the classroom into an environment that builds and supports academic and student social-emotional learning. Representing both urban and suburban schools, the case studies include classroom observations, student and teacher interviews, and student artifacts to illustrate how to make science relevant in students’ lives. Krajcik and Schneider note that application of ML-PBL requires intentional instructional practices and new ways of thinking about what it means to learn. Easing this challenge, the editors equip elementary science teachers with curricular resources including high-quality instructional materials, professional-learning exercises, and formative assessments. Science Education Through Multiple Literacies provides the necessary elements to transform science teaching and learning so that students learn the skills to navigate with confidence through our complex world.


Teaching Science for Understanding in Elementary and Middle Schools

Teaching Science for Understanding in Elementary and Middle Schools

Author: Wynne Harlen

Publisher: Heinemann Educational Books

Published: 2015

Total Pages: 160

ISBN-13: 9780325061597

DOWNLOAD EBOOK

"This book comes at just the right time, as teachers are being encouraged to re-examine current approaches to science instruction." -Lynn Rankin, Director, Institute for Inquiry, Exploratorium "Easy to read and comprehend with very explicit examples, it will be foundational for classroom teachers as they journey from novice teacher of science to expert." -Jo Anne Vasquez, Ph.D., Past President of the National Science Teachers Association "Teaching Science for Understanding is a comprehensive, exquisitely written guide and well-illustrated resource for high quality teaching and learning of inquiry-based science." -Hubert M. Dyasi, Ph.D., Professor of Science, City College and City University of New York Even though there is an unending supply of science textbooks, kits, and other resources, the practice of teaching science is more challenging than simply setting up an experiment. In Teaching Science for Understanding in Elementary and Middle Schools, Wynne Harlen focuses on why developing understanding is essential in science education and how best to engage students in activities that deepen their curiosity about the world and promote enjoyment of science. Teaching Science for Understanding in Elementary and Middle Schools centers on how to build on the ideas your students already have to cultivate the thinking and skills necessary for developing an understanding of the scientific aspects of the world, including: helping students develop and use the skills of investigation drawing conclusions from data through analyzing, interpreting, and explaining creating classrooms that encourage students to explain and justify their thinking asking productive questions to support students' understanding. Through classroom vignettes, examples, and practical suggestions at the end of each chapter, Wynne provides a compelling vision of what can be achieved through science education...and strategies that you can implement in your classroom right now.


Teaching Science in Elementary and Middle School

Teaching Science in Elementary and Middle School

Author: Joseph S. Krajcik

Publisher: Routledge

Published: 2014-01-23

Total Pages: 421

ISBN-13: 1136287760

DOWNLOAD EBOOK

Teaching Science in Elementary and Middle School offers in-depth information about the fundamental features of project-based science and strategies for implementing the approach. In project-based science classrooms students investigate, use technology, develop artifacts, collaborate, and make products to show what they have learned. Paralleling what scientists do, project-based science represents the essence of inquiry and the nature of science. Because project-based science is a method aligned with what is known about how to help all children learn science, it not only helps students learn science more thoroughly and deeply, it also helps them experience the joy of doing science. Project-based science embodies the principles in A Framework for K-12 Science Education and the Next Generation Science Standards. Blending principles of learning and motivation with practical teaching ideas, this text shows how project-based learning is related to ideas in the Framework and provides concrete strategies for meeting its goals. Features include long-term, interdisciplinary, student-centered lessons; scenarios; learning activities, and "Connecting to Framework for K–12 Science Education" textboxes. More concise than previous editions, the Fourth Edition offers a wealth of supplementary material on a new Companion Website, including many videos showing a teacher and class in a project environment.


Selecting Instructional Materials

Selecting Instructional Materials

Author: National Research Council

Publisher: National Academies Press

Published: 1999-11-17

Total Pages: 135

ISBN-13: 030917287X

DOWNLOAD EBOOK

The National Science Education Standards set broad content goals for teaching grades K-12. For science teaching programs to achieve these goalsâ€"indeed, for science teaching to be most effectiveâ€"teachers and students need textbooks, lab kits, videos, and other materials that are clear, accurate, and help students achieve the goals set by the standards. Selecting Instructional Materials provides a rigorously field-tested procedure to help education decisionmakers evaluate and choose materials for the science classroom. The recommended procedure is unique, adaptable to local needs, and realistic given the time and money limitations typical to school districts. This volume includes a guide outlining the entire process for school district facilitators, and provides review instruments for each step. It critically reviews the current selection process for science teaching materialsâ€"in the 20 states where the state board of education sets forth a recommended list and in the 30 states where materials are selected entirely by local decisionmakers. Selecting Instructional Materials explores how purchasing decisions are influenced by parent attitudes, political considerations, and the marketing skills of those who produce and sell science teaching materials. It will be indispensable to state and local education decisionmakers, science program administrators and teachers, and science education advocates.