Volume 41 of Methods in Microbiology is a methods book designed to highlight procedures that will revitalize the purposes and practices of prokaryotic systematics.This volume will notably show that genomics and computational biology are pivotal to the new direction of travel and will emphasise that new developments need to be built upon historical good practices, notably the continued use of the nomenclatural type concept and the requirement to deposit type strains in at least two service culture collections in different countries. - Detailed protocols on cutting edge methods - Prepared by leading international experts in the relevant fields
This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics.
This book presents recent scientific investigations in microbial ecology and systematics. Advanced microbial science investigations employ the latest technologies for research in microbiology and microbial applications. The book has complete information on classical microbiology techniques for assessment of the composition of microbial diversity assessment, advancement in next-generation technology, advantages of microbial products in sustainable developments and their application for societal benefits. Current research on microorganisms is presented as a perfect book for studies on "Microbial Systematics". This book will serve as an important resource for practising research and review for the scientific community.
The PhyloCode is a set of principles, rules, and recommendations governing phylogenetic nomenclature, a system for naming taxa by explicit reference to phylogeny. In contrast, the current botanical, zoological, and bacteriological codes define taxa by reference to taxonomic ranks (e.g., family, genus) and types. This code will govern the names of clades; species names will still be governed by traditional codes. The PhyloCode is designed so that it can be used concurrently with the rank-based codes. It is not meant to replace existing names but to provide an alternative system for governing the application of both existing and newly proposed names. Key Features Provides clear regulations for naming clades Based on expressly phylogenetic principles Complements existing codes of nomenclature Eliminates the reliance on taxonomic ranks in favor of phylogenetic relationships Related Titles: Rieppel, O. Phylogenetic Systematics: Haeckel to Hennig (ISBN 978-1-4987-5488-0) de Queiroz, K., Cantino, P. D. and Gauthier, J. A. Phylonyms: A Companion to the PhyloCode (ISBN 978-1-138-33293-5).
Designed as an upper-level textbook and a reference for researchers, this important book concentrates on central concepts of the bacterial lifestyle. Taking a refreshingly new approach, it present an integrated view of the prokaryotic cell as an organism and as a member of an interacting population. Beginning with a description of cellular structures, the text proceeds through metabolic pathways and metabolic reactions to the genes and regulatory mechanisms. At a higher level of complexity, a discussion of cell differentiation processes is followed by a description of the diversity of prokaryotes and their role in the biosphere. A closing section deals with man and microbes (ie, applied microbiology). The first text to adopt an integrated view of the prokaryotic cell as an organism and as a member of a population. Vividly illustrates the diversity of the prokaryotic world - nearly all the metabolic diversity in living organisms is found in microbes. New developments in applied microbiology highlighted. Extensive linking between related topics allows easy navigation through the book. Essential definitions and conclusions highlighted. Supplementary information in boxes.
Microbial Resources: From Functional Existence in Nature to Applications provides an exciting interdisciplinary journey through the rapidly developing field of microbial resources, including relationships to aspects of microbiology. Covers the functional existence of microorganisms in nature, as well as the transfer of this knowledge for industrial and other applications. Examines the economic perspective of revealing the potential value of microbial material and figuring it into socio-economic value; legal perspectives; and how to organize a fair allotment of socio-economic benefits to all stakeholders who have effectively contributed to the preservation, study, and exploitation of microbiological material. - Covers aspects of foundational information related to microbiology, microbial ecology, and diversity, as well as new advances in microbial genomics - Provides information on the utilization of microbial resources in biotechnology - Covers legislative issues and related law in biodiscovery - Fills a need for a very broad audience and is a good resource for microbiologists seeking to know the extent of microbiology approaches, the policies associated with microbiology, and potential career paths for researchers - Has significant added value due to the inclusion of comprehensive coverage of the biology, ecology, biochemistry and international legislation surrounding these applications
The revised Third Edition of The Prokaryotes, acclaimed as a classic reference in the field, offers new and updated articles by experts from around the world on taxa of relevance to medicine, ecology and industry. Entries combine phylogenetic and systematic data with insights into genetics, physiology and application. Existing entries have been revised to incorporate rapid progress and technological innovation. The new edition improves on the lucid presentation, logical layout and abundance of illustrations that readers rely on, adding color illustration throughout. Expanded to seven volumes in its print form, the new edition adds a new, searchable online version.
This is the story of a profound revolution in the way biologists explore life's history, understand its evolutionary processes, and reveal its diversity. It is about life's smallest entities, deepest diversity, and greatest cellular biomass: the microbiosphere. Jan Sapp introduces us to a new field of evolutionary biology and a new brand of molecular evolutionists who descend to the foundations of evolution on Earth to explore the origins of the genetic system and the primary life forms from which all others have emerged. In so doing, he examines-from Lamarck to the present-the means of pursuing the evolution of complexity, and of depicting the greatest differences among organisms. The New Foundations of Evolution takes us into a world that classical evolutionists could never have imagined: a deep phylogeny based on three domains of life and multiple kingdoms, and created by mechanisms very unlike those considered by Darwin and his followers. Evolution by leaps seems to occur regularly in the microbial world where molecular evolutionists have shown the inheritance of acquired genes and genomes are major modes of evolutionary innovation. Revisiting the history of microbiology for the first time from the perspective of evolutionary biology, Sapp shows why classical Darwinian conceptions centering on questions of the origin of species were forged without a microbial foundation, why classical microbiologists considered it impossible to know the course of evolution, and classical molecular biologists considered the evolution of the molecular genetic system to be beyond understanding. In telling this stirring story of scientific iconoclasm, this book elucidates how the new evolutionary biology arose, what methods and assumptions underpin it, and the fiery controversies that continue to shape biologists' understanding of the foundations of evolution today.
The revised Third Edition of The Prokaryotes, acclaimed as a classic reference in the field, offers new and updated articles by experts from around the world on taxa of relevance to medicine, ecology and industry. Entries combine phylogenetic and systematic data with insights into genetics, physiology and application. Existing entries have been revised to incorporate rapid progress and technological innovation. The new edition improves on the lucid presentation, logical layout and abundance of illustrations that readers rely on, adding color illustration throughout. Expanded to seven volumes in its print form, the new edition adds a new, searchable online version.
Systematic biology has a far wider application than merely the provision of a reliable classification scheme for new strains. With the framework of the hierarchic system stabilizing, genomes, noncoding regions, and genes and their products can now be evaluated in an evolutionary context. This book summarizes recent developments in the molecular characterization of cultured and as-yet uncultured prokaryotes, emphasizing the strengths and weaknesses of individual approaches. The chapters of the book are compiled to stimulate students to enter the field of bacterial diversity, presenting a broad spectrum of fascinating multifaceted disciplines that illuminate the paths to ecosystem functioning, communication within communities, symbiosis, life in extreme environments, astrobiology, and more.