In inverse problems, the aim is to obtain, via a mathematical model, information on quantities that are not directly observable but rather depend on other observable quantities. Inverse problems are encountered in such diverse areas of application as medical imaging, remote sensing, material testing, geosciences and financing. It has become evident that new ideas coming from differential geometry and modern analysis are needed to tackle even some of the most classical inverse problems. This book contains a collection of presentations, written by leading specialists, aiming to give the reader up-to-date tools for understanding the current developments in the field.
This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.
This volume provides academic discussion on the theory and practice of mathematical analysis of nonlinear and inverse problems in electromagnetics and their applications. From mathematical problem statement to numerical results, the featured articles provide a concise overview of comprehensive approaches to the solution of problems. Articles highlight the most recent research concerning reliable theoretical approaches and numerical techniques and cover a wide range of applications, including acoustics, electromagnetics, optics, medical imaging, and geophysics. The nonlinear and ill-posed nature of inverse problems and the challenges they present when developing new numerical methods are explained, and numerical verification of proposed new methods on simulated and experimental data is provided. Based on the special session of the same name at the 2017 Progress in Electromagnetics Research Symposium, this book offers a platform for interaction between theoretical and practical researchers and between senior and incoming members in the field.
A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.
Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.
Inverse boundary problems are a rapidly developing area of applied mathematics with applications throughout physics and the engineering sciences. However, the mathematical theory of inverse problems remains incomplete and needs further development to aid in the solution of many important practical problems. Inverse Boundary Spectral Problems
In this authoritative and comprehensive volume, Claude Bardos and Andrei Fursikov have drawn together an impressive array of international contributors to present important recent results and perspectives in this area. The main subjects that appear here relate largely to mathematical aspects of the theory but some novel schemes used in applied mathematics are also presented. Various topics from control theory, including Navier-Stokes equations, are covered.
While rooted in controlled PDE systems, this 2005 AMS-IMS-SIAM Summer Research Conference sought to reach out to a rather distinct, yet scientifically related, research community in mathematics interested in PDE-based dynamical systems. Indeed, this community is also involved in the study of dynamical properties and asymptotic long-time behavior (in particular, stability) of PDE-mixed problems. It was the editors' conviction that the time had become ripe and the circumstances propitious for these two mathematical communities--that of PDE control and optimization theorists and that of dynamical specialists--to come together in order to share recent advances and breakthroughs in their respective disciplines. This conviction was further buttressed by recent discoveries that certain energy methods, initially devised for control-theoretic a-priori estimates, once combined with dynamical systems techniques, yield wholly new asymptotic results on well-established, nonlinear PDE systems, particularly hyperb These expectations are now particularly well reflected in the contributions to this volume, which involve nonlinear parabolic, as well as hyperbolic, equations and their attractors; aero-elasticity, elastic systems; Euler-Korteweg models; thin-film equations; Schrodinger equations; beam equations; etc. in addition, the static topics of Helmholtz and Morrey potentials are also prominently featured. A special component of the present volume focuses on hyperbolic conservation laws, to take advantage of recent theoretical advances with significant implications also on applied problems. in all these areas, the reader will find state-of-the-art accounts as stimulating starting points for further research.