Nevanlinna Theory and Complex Differential Equations

Nevanlinna Theory and Complex Differential Equations

Author: Ilpo Laine

Publisher: Walter de Gruyter

Published: 1992

Total Pages: 354

ISBN-13: 9783110134223

DOWNLOAD EBOOK

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemańczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antić, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)


Nevanlinna Theory and Complex Differential Equations

Nevanlinna Theory and Complex Differential Equations

Author: Ilpo Laine

Publisher: Walter de Gruyter

Published: 2011-06-01

Total Pages: 353

ISBN-13: 3110863146

DOWNLOAD EBOOK

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.


Nevanlinna Theory, Normal Families, and Algebraic Differential Equations

Nevanlinna Theory, Normal Families, and Algebraic Differential Equations

Author: Norbert Steinmetz

Publisher: Springer

Published: 2017-07-24

Total Pages: 249

ISBN-13: 3319598007

DOWNLOAD EBOOK

This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers working on related problems, Nevanlinna Theory, Normal Families, and Algebraic Differential Equations will also be of interest to complex analysts looking for an introduction to various topics in the subject area. With examples, exercises and proofs seamlessly intertwined with the body of the text, this book is particularly suitable for the more advanced reader.


Painlevé Differential Equations in the Complex Plane

Painlevé Differential Equations in the Complex Plane

Author: Valerii I. Gromak

Publisher: Walter de Gruyter

Published: 2008-08-22

Total Pages: 313

ISBN-13: 3110198096

DOWNLOAD EBOOK

This book is the first comprehensive treatment of Painlevé differential equations in the complex plane. Starting with a rigorous presentation for the meromorphic nature of their solutions, the Nevanlinna theory will be applied to offer a detailed exposition of growth aspects and value distribution of Painlevé transcendents. The subsequent main part of the book is devoted to topics of classical background such as representations and expansions of solutions, solutions of special type like rational and special transcendental solutions, Bäcklund transformations and higher order analogues, treated separately for each of these six equations. The final chapter offers a short overview of applications of Painlevé equations, including an introduction to their discrete counterparts. Due to the present important role of Painlevé equations in physical applications, this monograph should be of interest to researchers in both mathematics and physics and to graduate students interested in mathematical physics and the theory of differential equations.


Ordinary Differential Equations in the Complex Domain

Ordinary Differential Equations in the Complex Domain

Author: Einar Hille

Publisher: Courier Corporation

Published: 1997-01-01

Total Pages: 514

ISBN-13: 9780486696201

DOWNLOAD EBOOK

Graduate-level text offers full treatments of existence theorems, representation of solutions by series, theory of majorants, dominants and minorants, questions of growth, much more. Includes 675 exercises. Bibliography.


Meromorphic Functions over non-Archimedean Fields

Meromorphic Functions over non-Archimedean Fields

Author: Pei-Chu Hu

Publisher: Springer Science & Business Media

Published: 2000-09-30

Total Pages: 308

ISBN-13: 9780792365327

DOWNLOAD EBOOK

This book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research. Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.


Complex Delay-Differential Equations

Complex Delay-Differential Equations

Author: Kai Liu

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-06-08

Total Pages: 276

ISBN-13: 3110560402

DOWNLOAD EBOOK

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.


Advances in Fluid Dynamics

Advances in Fluid Dynamics

Author: B. Rushi Kumar

Publisher: Springer Nature

Published: 2020-07-10

Total Pages: 1014

ISBN-13: 9811543089

DOWNLOAD EBOOK

This book comprises selected peer-reviewed proceedings of the International Conference on Applications of Fluid Dynamics (ICAFD 2018) organized by the School of Advanced Sciences, Vellore Institute of Technology, India, in association with the University of Botswana and the Society for Industrial and Applied Mathematics (SIAM), USA. With an aim to identify the existing challenges in the area of applied mathematics and mechanics, the book emphasizes the importance of establishing new methods and algorithms to address these challenges. The topics covered include diverse applications of fluid dynamics in aerospace dynamics and propulsion, atmospheric sciences, compressible flow, environmental fluid dynamics, control structures, viscoelasticity and mechanics of composites. Given the contents, the book is a useful resource for students, researchers as well as practitioners.


Mittag-Leffler Functions, Related Topics and Applications

Mittag-Leffler Functions, Related Topics and Applications

Author: Rudolf Gorenflo

Publisher: Springer Nature

Published: 2020-10-27

Total Pages: 548

ISBN-13: 3662615509

DOWNLOAD EBOOK

The 2nd edition of this book is essentially an extended version of the 1st and provides a very sound overview of the most important special functions of Fractional Calculus. It has been updated with material from many recent papers and includes several surveys of important results known before the publication of the 1st edition, but not covered there. As a result of researchers’ and scientists’ increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have caught the interest of the scientific community. Focusing on the theory of Mittag-Leffler functions, this volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In particular, the Mittag-Leffler functions make it possible to describe phenomena in processes that progress or decay too slowly to be represented by classical functions like the exponential function and related special functions. The book is intended for a broad audience, comprising graduate students, university instructors and scientists in the field of pure and applied mathematics, as well as researchers in applied sciences like mathematical physics, theoretical chemistry, bio-mathematics, control theory and several other related areas.


Transcendental Dynamics and Complex Analysis

Transcendental Dynamics and Complex Analysis

Author: Philip J. Rippon

Publisher: Cambridge University Press

Published: 2008-06-26

Total Pages: 452

ISBN-13: 0521683726

DOWNLOAD EBOOK

Presenting papers by researchers in transcendental dynamics and complex analysis, this exciting new and modern book is written in honor of Noel Baker, who laid the foundations of transcendental complex dynamics. The papers describe the state of the art in this subject, with new results on completely invariant domains, wandering domains, the exponential parameter space, and normal families. The inclusion of comprehensive survey articles on dimensions of Julia sets, buried components of Julia sets, Baker domains, Fatou components of functions of small growth, and ergodic theory of transcendental meromorphic functions means this is essential reading for students and researchers in complex dynamics and complex analysis.