Collected Works of Witold Hurewicz

Collected Works of Witold Hurewicz

Author: Witold Hurewicz

Publisher: American Mathematical Soc.

Published: 1995

Total Pages: 654

ISBN-13: 0821800116

DOWNLOAD EBOOK

This book contains papers of the outstanding and versatile mathematician, Witold Hurewicz. Preceding the collection are introductory articles describing Hurewicz's contributions to Borel sets, dimension theory, and algebraic topology. Hurewicz first studied set theory and dimension, and his papers on this topic are especially clear and precise, making them accessible to beginning mathematicians. His work in algebraic topology is marked by five fundamental papers which provide an introduction to homotopy groups and the Hurewicz Theorem concerning the relation between homotopy and singular homology. These papers are included here in their original form along with English translations. Each paper in the collection is followed by a review from one of the major reviewing journals. These reviews were written by eminent mathematicians and serve as excellent abstracts for the papers.


Commutative MBJ-neutrosophic ideals of BCK-algebras

Commutative MBJ-neutrosophic ideals of BCK-algebras

Author: Y.B. Jun

Publisher: Infinite Study

Published:

Total Pages: 13

ISBN-13:

DOWNLOAD EBOOK

The notion of commutative MBJ-neutrosophic ideal is introduced, and several properties are investigated. Relations between MBJ-neutrosophic ideal and commutative MBJ-neutrosophic ideal are considered. Characterizations of commutative MBJ-neutrosophic ideal are discussed.


Mathematics of Fuzzy Sets

Mathematics of Fuzzy Sets

Author: Ulrich Höhle

Publisher: Springer Science & Business Media

Published: 1998-12-31

Total Pages: 732

ISBN-13: 9780792383888

DOWNLOAD EBOOK

Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact or complete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton–Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets.


On Neutrosophic Semi-Open sets in Neutrosophic Topological Spaces

On Neutrosophic Semi-Open sets in Neutrosophic Topological Spaces

Author: P. Iswarya

Publisher: Infinite Study

Published:

Total Pages: 10

ISBN-13:

DOWNLOAD EBOOK

The purpose of this paper is to define the product related neutrosophic topological space and proved some theorems based on this. We introduce the concept of neutrosophic semiopen sets and neutrosophic semi-closed sets in neutrosophic topological spaces and derive some of their characterization. Finally, we analyze neutrosophic semi-interior and neutrosophic semi-closure operators also.


A Compendium of Continuous Lattices

A Compendium of Continuous Lattices

Author: G. Gierz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 390

ISBN-13: 3642676782

DOWNLOAD EBOOK

A mathematics book with six authors is perhaps a rare enough occurrence to make a reader ask how such a collaboration came about. We begin, therefore, with a few words on how we were brought to the subject over a ten-year period, during part of which time we did not all know each other. We do not intend to write here the history of continuous lattices but rather to explain our own personal involvement. History in a more proper sense is provided by the bibliography and the notes following the sections of the book, as well as by many remarks in the text. A coherent discussion of the content and motivation of the whole study is reserved for the introduction. In October of 1969 Dana Scott was lead by problems of semantics for computer languages to consider more closely partially ordered structures of function spaces. The idea of using partial orderings to correspond to spaces of partially defined functions and functionals had appeared several times earlier in recursive function theory; however, there had not been very sustained interest in structures of continuous functionals. These were the ones Scott saw that he needed. His first insight was to see that - in more modern terminology - the category of algebraic lattices and the (so-called) Scott-continuous functions is cartesian closed.


Hypergroup Theory

Hypergroup Theory

Author: Bijan Davvaz

Publisher: World Scientific

Published: 2021-12-28

Total Pages: 300

ISBN-13: 9811249407

DOWNLOAD EBOOK

The book presents an updated study of hypergroups, being structured on 12 chapters in starting with the presentation of the basic notions in the domain: semihypergroups, hypergroups, classes of subhypergroups, types of homomorphisms, but also key notions: canonical hypergroups, join spaces and complete hypergroups. A detailed study is dedicated to the connections between hypergroups and binary relations, starting from connections established by Rosenberg and Corsini. Various types of binary relations are highlighted, in particular equivalence relations and the corresponding quotient structures, which enjoy certain properties: commutativity, cyclicity, solvability.A special attention is paid to the fundamental beta relationship, which leads to a group quotient structure. In the finite case, the number of non-isomorphic Rosenberg hypergroups of small orders is mentioned. Also, the study of hypergroups associated with relations is extended to the case of hypergroups associated to n-ary relations. Then follows an applied excursion of hypergroups in important chapters in mathematics: lattices, Pawlak approximation, hypergraphs, topology, with various properties, characterizations, varied and interesting examples. The bibliography presented is an updated one in the field, followed by an index of the notions presented in the book, useful in its study.


Probabilistic Metric Spaces

Probabilistic Metric Spaces

Author: B. Schweizer

Publisher: Courier Corporation

Published: 2011-10-14

Total Pages: 354

ISBN-13: 0486143759

DOWNLOAD EBOOK

This distinctly nonclassical treatment focuses on developing aspects that differ from the theory of ordinary metric spaces, working directly with probability distribution functions rather than random variables. The two-part treatment begins with an overview that discusses the theory's historical evolution, followed by a development of related mathematical machinery. The presentation defines all needed concepts, states all necessary results, and provides relevant proofs. The second part opens with definitions of probabilistic metric spaces and proceeds to examinations of special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. Throughout, the authors focus on developing aspects that differ from the theory of ordinary metric spaces, rather than simply transferring known metric space results to a more general setting.


Handbook of Set-Theoretic Topology

Handbook of Set-Theoretic Topology

Author: K. Kunen

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 1282

ISBN-13: 148329515X

DOWNLOAD EBOOK

This Handbook is an introduction to set-theoretic topology for students in the field and for researchers in other areas for whom results in set-theoretic topology may be relevant. The aim of the editors has been to make it as self-contained as possible without repeating material which can easily be found in standard texts. The Handbook contains detailed proofs of core results, and references to the literature for peripheral results where space was insufficient. Included are many open problems of current interest.In general, the articles may be read in any order. In a few cases they occur in pairs, with the first one giving an elementary treatment of a subject and the second one more advanced results. These pairs are: Hodel and Juhász on cardinal functions; Roitman and Abraham-Todorčević on S- and L-spaces; Weiss and Baumgartner on versions of Martin's axiom; and Vaughan and Stephenson on compactness properties.