We introduce refined concepts for neutrosophic quantum computing such as neutrosophic quantum states and transformation gates, neutrosophic Hadamard matrix, coherent and decoherent superposition states, entanglement and measurement notions based on neutrosophic quantum states. We also give some observations using these principles. We present a number of quantum computational matrix transformations based on neutrosophic logic and clarify quantum mechanical notions relying on neutrosophic states. The paper is intended to extend the work of Smarandache by introducing a mathematical framework for neutrosophic quantum computing and presenting some results.
This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors (alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali, Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao, Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas Kazimieras Zavadskas.
In this paper one generalizes the classical probability and imprecise probability to the notion of “neutrosophic probability” in order to be able to model Heisenberg’s Uncertainty Principle of a particle’s behavior, Schrödinger’s Cat Theory, and the state of bosons which do not obey Pauli’s Exclusion Principle (in quantum physics).
This book is part of the book-series dedicated to the advances of neutrosophic theories and their applications, started by the author in 1998. Its aim is to present the last developments in the field. This is the second extended and improved edition of Neutrosophic Perspectives (September 2017; first edition was published in June 2017). For the first time, we now introduce: — Neutrosophic Duplets and the Neutrosophic Duplet Structures; — Neutrosophic Multisets (as an extension of the classical multisets); — Neutrosophic Spherical Numbers; — Neutrosophic Overnumbers / Undernumbers / Offnumbers; — Neutrosophic Indeterminacy of Second Type; — Neutrosophic Hybrid Operators (where the heterogeneous t-norms and t-conorms may be used in designing neutrosophic aggregations); — Neutrosophic Triplet Weak Set (and con-sequently we have renamed the previous Neutros-ophic Triplet Set (2014-2016) as Neutrosophic Triplet Strong Set in order to distinguish them); — Neutrosophic Perfect Triplet; — Neutrosophic Imperfect Triplet; — Neutrosophic triplet relation of equivalence; — Two Neutrosophic Friends; — n Neutrosophic Friends; — Neutrosophic Triplet Loop; — Neutrosophic Triplet Function; — Neutrosophic Modal Logic; — and Neutrosophic Hedge Algebras. The Refined Neutrosophic Set / Logic / Probability were introduced in 2013 by F. Smarandache. Since year 2016 a new interest has been manifested by researchers for the Neutrosophic Triplets and their corresponding Neutros-ophic Triplet Algebraic Structures (introduced by F. Smarandache & M. Ali). Subtraction and Division of Neutrosophic Numbers were introduced by F. Smarandache - 2016, and Jun Ye – 2017. We also present various new applications in: neutrosophic multi-criteria decision-making, neutrosophic psychology, neutrosophic geographical function (the equatorial virtual line), neutrosophic probability in target identification, neutrosophic dynamic systems, neutrosophic quantum computers, neutrosophic theory of evolution, and neutrosophic triplet structures in our everyday life. Keywords: neutrosophy, neutrosophic duplets, neutrosophic duplet structures, neutrosophic multisets, neutrosophic hedge algebras, neutrosophic multi-criteria decision-making, neutrosophic psychology, neutrosophic geographical function, neutrosophic probability in target identification,
There is beginning for anything; we used to hear that phrase.The same wisdom word applies to us too. What began in 2005 asa short email on some ideas related to interpretation of the WaveMechanics results in a number of papers and books up to now.Some of these papers can be found in Progress in Physics orelsewhere.Our purpose here is to present a selection of those papers in acompilation which enable the readers to find some coherentideas which appeared in those articles. For this reason, theordering of the papers here is based on categories of ideas.