In this chapter, a solution procedure is proposed to solve neutrosophic linear fractional programming (NLFP) problem where cost of the objective function, the resources and the technological coefficients are triangular neutrosophic numbers.
Neutrosophic Sets and Systems (NSS) is an academic journal, published quarterly online and on paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any field.
This fourteenth volume of Collected Papers is an eclectic tome of 87 papers in Neutrosophics and other fields, such as mathematics, fuzzy sets, intuitionistic fuzzy sets, picture fuzzy sets, information fusion, robotics, statistics, or extenics, comprising 936 pages, published between 2008-2022 in different scientific journals or currently in press, by the author alone or in collaboration with the following 99 co-authors (alphabetically ordered) from 26 countries: Ahmed B. Al-Nafee, Adesina Abdul Akeem Agboola, Akbar Rezaei, Shariful Alam, Marina Alonso, Fran Andujar, Toshinori Asai, Assia Bakali, Azmat Hussain, Daniela Baran, Bijan Davvaz, Bilal Hadjadji, Carlos Díaz Bohorquez, Robert N. Boyd, M. Caldas, Cenap Özel, Pankaj Chauhan, Victor Christianto, Salvador Coll, Shyamal Dalapati, Irfan Deli, Balasubramanian Elavarasan, Fahad Alsharari, Yonfei Feng, Daniela Gîfu, Rafael Rojas Gualdrón, Haipeng Wang, Hemant Kumar Gianey, Noel Batista Hernández, Abdel-Nasser Hussein, Ibrahim M. Hezam, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Muthusamy Karthika, Nour Eldeen M. Khalifa, Madad Khan, Kifayat Ullah, Valeri Kroumov, Tapan Kumar Roy, Deepesh Kunwar, Le Thi Nhung, Pedro López, Mai Mohamed, Manh Van Vu, Miguel A. Quiroz-Martínez, Marcel Migdalovici, Kritika Mishra, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohammed Alshumrani, Mohamed Loey, Muhammad Akram, Muhammad Shabir, Mumtaz Ali, Nassim Abbas, Munazza Naz, Ngan Thi Roan, Nguyen Xuan Thao, Rishwanth Mani Parimala, Ion Pătrașcu, Surapati Pramanik, Quek Shio Gai, Qiang Guo, Rajab Ali Borzooei, Nimitha Rajesh, Jesús Estupiñan Ricardo, Juan Miguel Martínez Rubio, Saeed Mirvakili, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, Ahmed A. Salama, Nirmala Sawan, Gheorghe Săvoiu, Ganeshsree Selvachandran, Seok-Zun Song, Shahzaib Ashraf, Jayant Singh, Rajesh Singh, Son Hoang Le, Tahir Mahmood, Kenta Takaya, Mirela Teodorescu, Ramalingam Udhayakumar, Maikel Y. Leyva Vázquez, V. Venkateswara Rao, Luige Vlădăreanu, Victor Vlădăreanu, Gabriela Vlădeanu, Michael Voskoglou, Yaser Saber, Yong Deng, You He, Youcef Chibani, Young Bae Jun, Wadei F. Al-Omeri, Hongbo Wang, Zayen Azzouz Omar.
This book treats all kind of data in neutrosophic environment, with real-life applications, approaching topics as linear programming problem, linear fractional programming, integer programming, triangular neutrosophic numbers, single valued triangular neutrosophic number, neutrosophic optimization, goal programming problem, Taylor series, multi-objective programming problem, neutrosophic geometric programming, neutrosophic topology, neutrosophic open set, neutrosophic semi-open set, neutrosophic continuous function, cylindrical skin plate design, neutrosophic MULTIMOORA, alternative solutions, decision matrix, ratio system, reference point method, full multiplicative form, ordinal dominance, standard error, market research, and so on. The selected papers deal with the alleviation of world changes, including changing demographics, accelerating globalization, rising environmental concerns, evolving societal relationships, growing ethical and governance concern, expanding the impact of technology; some of these changes have impacted negatively the economic growth of private firms, governments, communities, and the whole society.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: n-Refined Neutrosophic Modules, A Neutrosophic Approach to Digital Images, A Novel Method for Neutrosophic Assignment Problem by using Interval-Valued Trapezoidal Neutrosophic Number.
The paper presents a novel strategy for solving bi-level linear programming problem based on goal programming in neutrosophic numbers environment. Bi-level linear programming problem comprises of two levels namely upper or first level and lower or second level with one objective at each level. The objective function of each level decision maker and the system constraints are considered as linear functions with neutrosophic numbers of the form [p + q I], where p, q are real numbers and I represents indeterminacy.
In the paper, we propose an alternative strategy for multi-level linear programming (MLP) problem with neutrosophic numbers through goal programming strategy. Multi-level linear programming problem consists of k levels where there is an upper level at the first level and multiple lower levels at the second level with one objective function at every level.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. In this issue: On Neutrosophic Crisp Sets and Neutrosophic Crisp Mathematical Morphology, New Results on Pythagorean Neutrosophic Open Sets in Pythagorean Neutrosophic Topological Spaces, Comparative Mathematical Model for Predicting of Financial Loans Default using Altman Z-Score and Neutrosophic AHP Methods.
This paper develops a general form of neutrosophic linear fractional programming (NLFP) problem and proposed a novel model to solve it. In this method the NLFP problem is decomposed into two neutrosophic linear programming (NLP) problem. Furthermore, the problem has been solved by combination of dual simplex method and a special ranking function. In addition, the model is compared with an existing method. An illustrative example is shown for better understanding of the proposed method. The results show that the method is computationally very simple and comprehensible.