Neutrosophic Extended Triplet Group Based on Neutrosophic Quadruple Numbers

Neutrosophic Extended Triplet Group Based on Neutrosophic Quadruple Numbers

Author: Qiaoyan Li

Publisher: Infinite Study

Published:

Total Pages: 15

ISBN-13:

DOWNLOAD EBOOK

In this paper, we explore the algebra structure based on neutrosophic quadruple numbers. Moreover, two kinds of degradation algebra systems of neutrosophic quadruple numbers are introduced. In particular, the following results are strictly proved: (1) the set of neutrosophic quadruple numbers with a multiplication operation is a neutrosophic extended triplet group; (2) the neutral element of each neutrosophic quadruple number is unique and there are only sixteen different neutral elements in all of neutrosophic quadruple numbers; (3) the set which has same neutral element is closed with respect to the multiplication operator; (4) the union of the set which has same neutral element is a partition of four-dimensional space.


Neutrosophic Triplet Group Based on Set Valued Neutrosophic Quadruple Numbers

Neutrosophic Triplet Group Based on Set Valued Neutrosophic Quadruple Numbers

Author: Memet Şahin

Publisher: Infinite Study

Published:

Total Pages: 10

ISBN-13:

DOWNLOAD EBOOK

Smarandache introduced neutrosophic quadruple sets and neutrosophic quadruple numbers [45] in 2015. These sets and numbers are real or complex number valued. In this study, we firstly introduce set valued neutrosophic quadruple sets and numbers. We give some known and special operations for set valued neutrosophic quadruple numbers.


Neutrosophic Quadruple Algebraic Codes over Z2 and their Properties

Neutrosophic Quadruple Algebraic Codes over Z2 and their Properties

Author: Vasantha Kandasamy

Publisher: Infinite Study

Published:

Total Pages: 14

ISBN-13:

DOWNLOAD EBOOK

In this paper we for the rst time develop, de ne and describe a new class of algebraic codes using Neutrosophic Quadruples which uses the notion of known value, and three unknown triplets (T; I; F) where T is the truth value, I is the indeterminate and F is the false value.


Study on the Algebraic Structure of Refined Neutrosophic Numbers

Study on the Algebraic Structure of Refined Neutrosophic Numbers

Author: Qiaoyan Li

Publisher: Infinite Study

Published:

Total Pages: 13

ISBN-13:

DOWNLOAD EBOOK

This paper aims to explore the algebra structure of refined neutrosophic numbers. Firstly, the algebra structure of neutrosophic quadruple numbers on a general field is studied. Secondly, The addition operator and multiplication operator on refined neutrosophic numbers are proposed and the algebra structure is discussed. We reveal that the set of neutrosophic refined numbers with an additive operation is an abelian group and the set of neutrosophic refined numbers with a multiplication operation is a neutrosophic extended triplet group. Moreover, algorithms for solving the neutral element and opposite elements of each refined neutrosophic number are given.


Neutrosophic Algebraic Structures and Their Applications

Neutrosophic Algebraic Structures and Their Applications

Author: Florentin Smarandache

Publisher: Infinite Study

Published: 2022-08-01

Total Pages: 269

ISBN-13:

DOWNLOAD EBOOK

Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.


Neutrosophic Components Semigroups and Multiset Neutrosophic Components Semigroups

Neutrosophic Components Semigroups and Multiset Neutrosophic Components Semigroups

Author: Vasantha W.B.

Publisher: Infinite Study

Published:

Total Pages: 11

ISBN-13:

DOWNLOAD EBOOK

Neutrosophic components (NC) under addition and product form different algebraic structures over different intervals. In this paper authors for the first time define the usual product and sum operations on NC. Here four different NC are defined using the four different intervals: (0, 1), [0, 1), (0, 1] and [0, 1].


New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability, with Applications

New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability, with Applications

Author: Florentin Smarandache

Publisher: MDPI

Published: 2019-11-27

Total Pages: 714

ISBN-13: 3039219383

DOWNLOAD EBOOK

This book contains 37 papers by 73 renowned experts from 13 countries around the world, on following topics: neutrosophic set; neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet semihypergroup and hypergroup; neutrosophic offset; uninorm; neutrosophic offuninorm and offnorm; neutrosophic offconorm; implicator; prospector; n-person cooperative game; ordinary single-valued neutrosophic (co)topology; ordinary single-valued neutrosophic subspace; α-level; ordinary single-valued neutrosophic neighborhood system; ordinary single-valued neutrosophic base and subbase; fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets; neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set; nondual; two universes; multiattribute group decision making; nonstandard analysis; extended nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left; pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology; nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted multiple instance learning; neutrosophic triangular norms; residuated lattices; representable neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely ∨-distributive; probabilistic neutrosophic hesitant fuzzy set; decision-making; Choquet integral; e-marketing; Internet of Things; neutrosophic set; multicriteria decision making techniques; uncertainty modeling; neutrosophic goal programming approach; shale gas water management system.


Neutrosophic Triplet m-Banach Spaces

Neutrosophic Triplet m-Banach Spaces

Author: Abdullah Kargın

Publisher: Infinite Study

Published: 2020-12-01

Total Pages: 16

ISBN-13:

DOWNLOAD EBOOK

Neutrosophic triplet theory has an important place in neutrosophic theory. Since the neutrosophic triplet set (Nts), which have the feature of having multiple unit elements, have different units than the classical unit, they have more features than the classical set. Also, Banach spaces are complete normed vector space defined by real and complex numbers that are studied historically in functional analysis. Thus, normed space and Banach space have an important place in functional analysis. In this article, neutrosophic triplet m-Banach spaces (NtmBs) are firstly obtained. Then, some definitions and examples are given for NtmBs. Based on these definitions, new theorems are given and proved. In addition, it is shown that NtmBs is different from neutrosophic triplet Banach space (NtBs). Furthermore, it is shown that relationship between NtmBs and NtBs. So, we added a new structure to functional analysis and neutrosophic triplet theory.