The notions of the neutrosophic triplet and neutrosophic duplet were introduced by Florentin Smarandache. From the existing research results, the neutrosophic triplets and neutrosophic duplets are completely different from the classical algebra structures.
In this book we define new operations mainly to construct mathematical models akin to Fuzzy Cognitive Maps (FCMs) model, Neutrosophic Cognitive Maps (NCMs) model and Fuzzy Relational Maps (FRMs) model. These new models are defined in chapter four of this book. These new models can find applications in discrete Artificial Neural Networks, soft computing, and social network analysis whenever the concept of indeterminate is involved.
The new notion of a neutrosophic triplet group (NTG) is proposed by Florentin Smarandache; it is a new algebraic structure different from the classical group.
This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.
This thesis discusses neutrosophic extended triplet (NET) direct product, semi-direct product and NET group actions. The aim is to give a clear introduction that provides a solid foundation for further studies into the subject. We introduce NET internal and external direct and semi-direct products for NET group by utilizing the notion of NET set theory of Smarandache. We also give examples and discuss their difference with the classical one.
In this paper, we extended the idea of a neutrosophic triplet set to non-associative semihypergroups and define neutrosophic triplet LA-semihypergroup.We discuss some basic results and properties. At the end, we provide an application of the proposed structure in Football.
In this paper, authors define the NeutroAlgebra of neutrosophic triplets groups. We prove the existence theorem for NeutroAlgebra of neutrosophic triplet groups. Several open problems are proposed. Further, the NeutroAlgebras of extended neutrosophic triplet groups have been obtained.