Neutron-capture prompt-gamma activation analysis (PGAA) is particularly valuable as a non-destructive nuclear method in the measurement of elements that do not form neutron capture products with delayed gamma ray emissions. Inaccurate and incomplete data have been a significant hindrance in the qualitative and quantitative analysis of complicated capture gamma spectra by means of PGAA. This database was produced to improve the quality and quantity of required data in order to make possible the reliable application of PGAA in fields such as materials science, geology, mining, archaeology, environment, food analysis and medicine. The database provides a variety of tables for all natural elements (from H to U) including the following data: isotopic composition, thermal radiative cross-section (total and partial), Westcott g-factors, energy of the gamma rays (prompt and delayed), decay mode, half-life and branching ratios. The CD-ROM included in this publication contains the database, the retrieval system and important electronic documents related to the project.--Publisher's description.
Over the past several decades, public concern over exposure to ionizing radiation has increased. This concern has manifested itself in different ways depending on the perception of risk to different individuals and different groups and the circumstances of their exposure. One such group are those U.S. servicemen (the "Atomic Veterans" who participated in the atmospheric testing of nuclear weapons at the Nevada Test Site or in the Pacific Proving Grounds, who served with occupation forces in or near Hiroshima and Nagasaki, or who were prisoners of war in or near those cities at the time of, or shortly after, the atomic bombings. This book addresses the feasibility of conducting an epidemiologic study to determine if there is an increased risk of adverse reproductive outcomes in the spouses, children, and grandchildren of the Atomic Veterans.
Encyclopedia of Nuclear Energy provides a comprehensive and reliable overview of the many ways nuclear energy contributes to society. Comprised of four volumes, it includes topics such as generating clean electricity, improving medical diagnostics and cancer treatment, improving crop yields, improving food shelf-lives, and crucially, the deployment of nuclear energy as an alternative energy source, one that is proving to be essential in the management of global warming. Carefully structured into thematic sections, this encyclopedia brings together the vast and highly diversified literature related to nuclear energy into a single resource, with convenient to read, cross-referenced chapters. This book will serve as an invaluable resource for researchers in the fields of energy, engineering, material science, chemistry, and physics, from both industry and academia. Offers a contemporary review of current nuclear energy research and insights into the future direction of the field, hence negating the need for individual searches across various databases Written by academics and practitioners from different fields to ensure that the knowledge within is easily understood by, and applicable to, a large audience Meticulously organized, with articles split into sections on key topics and clearly cross-referenced to allow students, researchers and professionals to quickly and easily find relevant information
This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.
This book reevaluates the health risks of ionizing radiation in light of data that have become available since the 1980 report on this subject was published. The data include new, much more reliable dose estimates for the A-bomb survivors, the results of an additional 14 years of follow-up of the survivors for cancer mortality, recent results of follow-up studies of persons irradiated for medical purposes, and results of relevant experiments with laboratory animals and cultured cells. It analyzes the data in terms of risk estimates for specific organs in relation to dose and time after exposure, and compares radiation effects between Japanese and Western populations.
661 tures, such as occurs in stellar atmospheres and in thermonuc1ear processes, will not be considered 1. Because photoelectric absorption predominates completely at low photon energies, and penetration theory is elementary under these conditions, attention is directed in this artic1e to photon energies above ""20 kev. On the high energy side, this artic1e does not cover the cascade shower processes which are dealt 2 with in cosmic ray studies • In this connection it is recalled that the cascade shower process, which involves electrons and positrons besides X rays, becomes predominant above 10 Mev in heavy elements, and above 100 Mev in light ones. Theories developed for the study of cascade showers in cosmic rays rely on assumptions about the prob ability of interactions with matter which are adequate only at energies of the order of 1 Gev or more. Below this energy there is a gap in which penetration phenomena are qualitatively known and understood but have not yet been calculated in detail. A few detailed experimental studies which have been made at energies up to 300 Mev will be reviewed in this article.
Radioactive isotopes and enriched stable isotopes are used widely in medicine, agriculture, industry, and science, where their application allows us to perform many tasks more accurately, more simply, less expensively, and more quickly than would otherwise be possible. Indeed, in many casesâ€"for example, biological tracersâ€"there is no alternative. In a stellar example of "technology transfer" that began before the term was popular, the Department of Energy (DOE) and its predecessors has supported the development and application of isotopes and their transfer to the private sector. The DOE is now at an important crossroads: Isotope production has suffered as support for DOE's laboratories has declined. In response to a DOE request, this book is an intensive examination of isotope production and availability, including the education and training of those who will be needed to sustain the flow of radioactive and stable materials from their sources to the laboratories and medical care facilities in which they are used. Chapters include an examination of enriched stable isotopes; reactor and accelerator-produced radionuclides; partnerships among industries, national laboratories, and universities; and national isotope policy.