Mathematical Topics In Neutron Transport Theory: New Aspects

Mathematical Topics In Neutron Transport Theory: New Aspects

Author: Mustapha Mokhtar Kharroubi

Publisher: World Scientific

Published: 1997-12-18

Total Pages: 372

ISBN-13: 981449819X

DOWNLOAD EBOOK

This book presents some recent mathematical developments about neutron transport equations. Several different topics are dealt with including regularity of velocity averages, spectral analysis of transport operators, inverse problems, nonlinear problems arising in the stochastic theory of neutron chain fissions, compactness properties of perturbed of c0-semigroups in Banach spaces with applications to transport theory, Miyadera perturbations of c0-semigroups in Banach spaces with applications to singular transport equations, a thorough analysis of the leading eigenelements of transport operators and their approximation, scattering theory. Besides the new problems addressed in this book a unification and extension of the classical spectral analysis of neutron transport equations is given.


Handbook of Nuclear Engineering

Handbook of Nuclear Engineering

Author: Dan Gabriel Cacuci

Publisher: Springer Science & Business Media

Published: 2010-09-14

Total Pages: 3701

ISBN-13: 0387981306

DOWNLOAD EBOOK

This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.


Transport Theory

Transport Theory

Author: James J. Duderstadt

Publisher: John Wiley & Sons

Published: 1979

Total Pages: 630

ISBN-13:

DOWNLOAD EBOOK

Problems after each chapter


Nuclear Reactor Physics

Nuclear Reactor Physics

Author: Weston M. Stacey

Publisher: John Wiley & Sons

Published: 2018-02-07

Total Pages: 766

ISBN-13: 352781230X

DOWNLOAD EBOOK

The third, revised edition of this popular textbook and reference, which has been translated into Russian and Chinese, expands the comprehensive and balanced coverage of nuclear reactor physics to include recent advances in understanding of this topic. The first part of the book covers basic reactor physics, including, but not limited to nuclear reaction data, neutron diffusion theory, reactor criticality and dynamics, neutron energy distribution, fuel burnup, reactor types and reactor safety. The second part then deals with such physically and mathematically more advanced topics as neutron transport theory, neutron slowing down, resonance absorption, neutron thermalization, perturbation and variational methods, homogenization, nodal and synthesis methods, and space-time neutron dynamics. For ease of reference, the detailed appendices contain nuclear data, useful mathematical formulas, an overview of special functions as well as introductions to matrix algebra and Laplace transforms. With its focus on conveying the in-depth knowledge needed by advanced student and professional nuclear engineers, this text is ideal for use in numerous courses and for self-study by professionals in basic nuclear reactor physics, advanced nuclear reactor physics, neutron transport theory, nuclear reactor dynamics and stability, nuclear reactor fuel cycle physics and other important topics in the field of nuclear reactor physics.


Fusion Neutronics

Fusion Neutronics

Author: Yican Wu

Publisher: Springer

Published: 2017-08-16

Total Pages: 402

ISBN-13: 981105469X

DOWNLOAD EBOOK

This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronic characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics. Further, it introduces readers to the unique principles and procedures of neutronics design, experimental methodologies and methodologies for fusion systems. The book not only highlights the latest advances and trends in the field, but also draws on the experiences and skills collected in the author’s more than 40 years of research. To make it more accessible and enhance its practical value, various representative examples are included to illustrate the application and efficiency of the methods, designs and experimental techniques discussed.


Nuclear Reactor

Nuclear Reactor

Author: John C. Lee

Publisher: John Wiley & Sons

Published: 2020-02-26

Total Pages: 658

ISBN-13: 1119582326

DOWNLOAD EBOOK

An introductory text for broad areas of nuclear reactor physics Nuclear Reactor Physics and Engineering offers information on analysis, design, control, and operation of nuclear reactors. The author—a noted expert on the topic—explores the fundamentals and presents the mathematical formulations that are grounded in differential equations and linear algebra. The book puts the focus on the use of neutron diffusion theory for the development of techniques for lattice physics and global reactor system analysis. The author also includes recent developments in numerical algorithms, including the Krylov subspace method, and the MATLAB software, including the Simulink toolbox, for efficient studies of steady-state and transient reactor configurations. In addition, nuclear fuel cycle and associated economics analysis are presented, together with the application of modern control theory to reactor operation. This important book: Provides a comprehensive introduction to the fundamental concepts of nuclear reactor physics and engineering Contains information on nuclear reactor kinetics and reactor design analysis Presents illustrative examples to enhance understanding Offers self-contained derivation of fluid conservation equations Written for undergraduate and graduate students in nuclear engineering and practicing engineers, Nuclear Reactor Physics and Engineering covers the fundamental concepts and tools of nuclear reactor physics and analysis.


Mathematical Topics in Neutron Transport Theory

Mathematical Topics in Neutron Transport Theory

Author: M. Mokhtar-Kharroubi

Publisher: World Scientific

Published: 1997

Total Pages: 372

ISBN-13: 9789810228699

DOWNLOAD EBOOK

This book presents some recent mathematical developments about neutron transport equations. Several different topics are dealt with including regularity of velocity averages, spectral analysis of transport operators, inverse problems, nonlinear problems arising in the stochastic theory of neutron chain fissions, compactness properties of perturbed of 0-semigroups in Banach spaces with applications to transport theory, Miyadera perturbations of c0-semigroups in Banach spaces with applications to singular transport equations, a thorough analysis of the leading eigenelements of transport operators and their approximation, scattering theory. Besides the new problems addressed in this book a unification and extension of the classical spectral analysis of neutron transport equations is given.


Physics of Nuclear Reactors

Physics of Nuclear Reactors

Author: P. Mohanakrishnan

Publisher: Elsevier

Published: 2021-05-19

Total Pages: 786

ISBN-13: 012822441X

DOWNLOAD EBOOK

Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection


Neutron Fluctuations

Neutron Fluctuations

Author: Imre Pazsit

Publisher: Elsevier

Published: 2007-10-05

Total Pages: 359

ISBN-13: 0080550436

DOWNLOAD EBOOK

The transport of neutrons in a multiplying system is an area of branching processes with a clear formalism. Neutron Fluctuations presents an account of the mathematical tools used in describing branching processes, which are then used to derive a large number of properties of the neutron distribution in multiplying systems with or without an external source. In the second part of the book, the theory is applied to the description of the neutron fluctuations in nuclear reactor cores as well as in small samples of fissile material. The question of how to extract information about the system under study is discussed. In particular the measurement of the reactivity of subcritical cores, driven with various Poisson and non-Poisson (pulsed) sources, and the identification of fissile material samples, is illustrated. The book gives pragmatic information for those planning and executing and evaluating experiments on such systems. - Gives a complete treatise of the mathematics of branching particle processes, and in particular neutron fluctuations, in a self-contained manner - The first monograph containing the theory and application of neutron fluctuations in low power ADS (spallation and pulsed sources) - Suitable as a tutorial and handbook/reference book for scientists and graduate students - One of the authors is the founder of the mathematical theory of neutron fluctuations in zero power systems