Predictive Modeling with SAS Enterprise Miner

Predictive Modeling with SAS Enterprise Miner

Author: Kattamuri S. Sarma

Publisher: SAS Institute

Published: 2017-07-20

Total Pages: 574

ISBN-13: 163526040X

DOWNLOAD EBOOK

« Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. »--


Neural Network Modeling Using SAS Enterprise Miner

Neural Network Modeling Using SAS Enterprise Miner

Author: Randall Matignon

Publisher: AuthorHouse

Published: 2005-08

Total Pages: 608

ISBN-13: 1418423416

DOWNLOAD EBOOK

This book is designed in making statisticians, researchers, and programmers aware of the awesome new product now available in SAS called Enterprise Miner. The book will also make readers get familiar with the neural network forecasting methodology in statistics. One of the goals to this book is making the powerful new SAS module called Enterprise Miner easy for you to use with step-by-step instructions in creating a Enterprise Miner process flow diagram in preparation to data-mining analysis and neural network forecast modeling. Topics discussed in this book An overview to traditional regression modeling. An overview to neural network modeling. Numerical examples of various neural network designs and optimization techniques. An overview to the powerful SAS product called Enterprise Miner. An overview to the SAS neural network modeling procedure called PROC NEURAL. Designing a SAS Enterprise Miner process flow diagram to perform neural network forecast modeling and traditional regression modeling with an explanation to the various configuration settings to the Enterprise Miner nodes used in the analysis. Comparing neural network forecast modeling estimates with traditional modeling estimates based on various examples from SAS manuals and literature with an added overview to the various modeling designs and a brief explanation to the SAS modeling procedures, option statements, and corresponding SAS output listings.


Data Mining Using SAS Enterprise Miner

Data Mining Using SAS Enterprise Miner

Author: Randall Matignon

Publisher: John Wiley & Sons

Published: 2007-08-03

Total Pages: 584

ISBN-13: 0470149019

DOWNLOAD EBOOK

The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike.


Decision Trees for Business Intelligence and Data Mining

Decision Trees for Business Intelligence and Data Mining

Author: Barry De Ville

Publisher: SAS Press

Published: 2006

Total Pages: 224

ISBN-13: 9781590475676

DOWNLOAD EBOOK

This example-driven guide illustrates the application and operation of decision trees in data mining, business intelligence, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements other business intelligence applications.


Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner

Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner

Author: Olivia Parr-Rud

Publisher: SAS Institute

Published: 2014-10

Total Pages: 182

ISBN-13: 1629593273

DOWNLOAD EBOOK

This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries. This beginnner's guide with clear, illustrated, step-by-step instructions will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence. --


Decision Trees for Analytics Using SAS Enterprise Miner

Decision Trees for Analytics Using SAS Enterprise Miner

Author: Barry De Ville

Publisher:

Published: 2019-07-03

Total Pages: 268

ISBN-13: 9781642953138

DOWNLOAD EBOOK

Decision Trees for Analytics Using SAS Enterprise Miner is the most comprehensive treatment of decision tree theory, use, and applications available in one easy-to-access place. This book illustrates the application and operation of decision trees in business intelligence, data mining, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements data mining approaches such as regression, as well as other business intelligence applications that incorporate tabular reports, OLAP, or multidimensional cubes. An expanded and enhanced release of Decision Trees for Business Intelligence and Data Mining Using SAS Enterprise Miner, this book adds up-to-date treatments of boosting and high-performance forest approaches and rule induction. There is a dedicated section on the most recent findings related to bias reduction in variable selection. It provides an exhaustive treatment of the end-to-end process of decision tree construction and the respective considerations and algorithms, and it includes discussions of key issues in decision tree practice. Analysts who have an introductory understanding of data mining and who are looking for a more advanced, in-depth look at the theory and methods of a decision tree approach to business intelligence and data mining will benefit from this book.


Applying Predictive Analytics

Applying Predictive Analytics

Author: Richard V. McCarthy

Publisher: Springer

Published: 2019-03-12

Total Pages: 209

ISBN-13: 3030140385

DOWNLOAD EBOOK

This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life example of how business analytics have been used in various aspects of organizations to solve issue or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes.


Machine Learning with SAS Viya

Machine Learning with SAS Viya

Author: SAS Institute Inc.

Publisher: SAS Institute

Published: 2020-05-29

Total Pages: 309

ISBN-13: 1951685377

DOWNLOAD EBOOK

Master machine learning with SAS Viya! Machine learning can feel intimidating for new practitioners. Machine Learning with SAS Viya provides everything you need to know to get started with machine learning in SAS Viya, including decision trees, neural networks, and support vector machines. The analytics life cycle is covered from data preparation and discovery to deployment. Working with open-source code? Machine Learning with SAS Viya has you covered – step-by-step instructions are given on how to use SAS Model Manager tools with open source. SAS Model Studio features are highlighted to show how to carry out machine learning in SAS Viya. Demonstrations, practice tasks, and quizzes are included to help sharpen your skills. In this book, you will learn about: Supervised and unsupervised machine learning Data preparation and dealing with missing and unstructured data Model building and selection Improving and optimizing models Model deployment and monitoring performance


Text Mining and Analysis

Text Mining and Analysis

Author: Dr. Goutam Chakraborty

Publisher: SAS Institute

Published: 2014-11-22

Total Pages: 340

ISBN-13: 1612907873

DOWNLOAD EBOOK

Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.