Neural Networks and Learning Machines
Author: Simon S. Haykin
Publisher: Prentice Hall
Published: 2009
Total Pages: 938
ISBN-13: 0131471392
DOWNLOAD EBOOKFor graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Renowned for its thoroughness and readability, this well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. Matlab codes used for the computer experiments in the text are available for download at: http: //www.pearsonhighered.com/haykin/ Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently.