Networked Control Systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators and controllers is realized by a shared (wired or wireless) communication network. NCSs offer several advantages, such as reduced installation and maintenance costs, as well as greater flexibility, over conventional control systems in which parts of control loops exchange information via dedicated point-to-point connections. The principal goal of this book is to present a coherent and versatile framework applicable to various settings investigated by the authors over the last several years. This framework is applicable to nonlinear time-varying dynamic plants and controllers with delayed dynamics; a large class of static, dynamic, probabilistic and priority-oriented scheduling protocols; delayed, noisy, lossy and intermittent information exchange; decentralized control problems of heterogeneous agents with time-varying directed (not necessarily balanced) communication topologies; state- and output-feedback; off-line and on-line intermittent feedback; optimal intermittent feedback through Approximate Dynamic Programming (ADP) and Reinforcement Learning (RL); and control systems with exogenous disturbances and modeling uncertainties.
This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled. The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates. It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control. Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and design of model-based networked systems Parameter identification and adaptive stabilization of systems controlled over networks The MB-NCS approach to decentralized control of distributed systems Model-Based Control of Networked Systems will appeal to researchers, practitioners, and graduate students interested in the control of networked systems, distributed systems, and systems with limited feedback.
This book nds its origin in the WIDE PhD School on Networked Control Systems, which we organized in July 2009 in Siena, Italy. Having gathered experts on all the aspects of networked control systems, it was a small step to go from the summer school to the book, certainly given the enthusiasm of the lecturers at the school. We felt that a book collecting overviewson the important developmentsand open pr- lems in the eld of networked control systems could stimulate and support future research in this appealing area. Given the tremendouscurrentinterests in distributed control exploiting wired and wireless communication networks, the time seemed to be right for the book that lies now in front of you. The goal of the book is to set out the core techniques and tools that are ava- able for the modeling, analysis and design of networked control systems. Roughly speaking, the book consists of three parts. The rst part presents architectures for distributed control systems and models of wired and wireless communication n- works. In particular, in the rst chapter important technological and architectural aspects on distributed control systems are discussed. The second chapter provides insight in the behavior of communication channels in terms of delays, packet loss and information constraints leading to suitable modeling paradigms for commu- cation networks.
Classical Feedback Control with Nonlinear Multi-Loop Systems describes the design of high-performance feedback control systems, emphasizing the frequency-domain approach widely used in practical engineering. It presents design methods for high-order nonlinear single- and multi-loop controllers with efficient analog and digital implementations. Bode integrals are employed to estimate the available system performance and to determine the ideal frequency responses that maximize the disturbance rejection and feedback bandwidth. Nonlinear dynamic compensators provide global stability and improve transient responses. This book serves as a unique text for an advanced course in control system engineering, and as a valuable reference for practicing engineers competing in today’s industrial environment.
Networked Control Systems: Cloud Control and Secure Control explores new technological developments in networked control systems (NCS), including new techniques, such as event-triggered, secure and cloud control. It provides the fundamentals and underlying issues of networked control systems under normal operating environments and under cyberphysical attack. The book includes a critical examination of the principles of cloud computing, cloud control systems design, the available techniques of secure control design to NCS's under cyberphysical attack, along with strategies for resilient and secure control of cyberphysical systems. Smart grid infrastructures are also discussed, providing diagnosis methods to analyze and counteract impacts. Finally, a series of practical case studies are provided to cover a range of NCS's. This book is an essential resource for professionals and graduate students working in the fields of networked control systems, signal processing and distributed estimation. - Provides coverage of cloud-based approaches to control systems and secure control methodologies to protect cyberphysical systems against various types of malicious attacks - Provides an overview of control research literature and explores future developments and solutions - Includes case studies that offer solutions for issues with modeling, quantization, packet dropout, time delay and communication constraints
The insertion of communication networks in feedback control loops complicates analysis and synthesis of Cyber-Physical Systems (CPSs), and network-induced uncertainties may degrade system control performances. Thus, this book researches networked delay compensation and event-triggered control approaches for a series of CPSs subject to network-induced uncertainties. The authors begin with an introduction to the concepts and challenges of CPSs, followed by an overview of networked control approaches and event-triggered control strategies in CPSs. Then, networked delay compensation and event-triggered control approaches are proposed for CPSs with network communication delay, data dropout, signal quantization and event-triggered communication. More specifically, networked delay compensation approaches are proposed for linear/nonlinear networked controlled plant with time-varying and random network communication delays and data dropouts. To reduce computational burden and network communication loads in CPSs, event-triggered control, self-triggered control, co-design of event-triggered control and quantized control techniques, and event-triggered disturbance rejection control approaches are also presented. This book is an essential text for researchers and engineers interested in cybersecurity, networked control, and CPS. It would also prove useful for graduate students in the fields of science, engineering, and computer science.
This book shows some secure control methods of networked control systems related to linear control system, nonlinear control system, multi-agent system and its applications in power systems. The proposed secure control methods provide some useful results about modeling of network attacks, resilient analysis and synthesis methods, active defense control method.The contents of this book are lists as followings. (1) Modeling of DoS attacks, deception attacks and replay attacks; (2)Secure control methods are proposed by combing delay system method, switched system method and event-based control method. (3) Active control methods are proposed by using model-predictive control and redundant control. (4) The proposed control methods are applied to the security problem of power system.The methods of this book include DoS attacks modeling such as, periodic jamming attack model,model-based average dwell time model, deception attack modeling and relay attack modeling; piece-wise Lyapunov-Krasoviskiifunctional method, stochastic control method; the results including resilient conditions of networked control system and related resilient control design method with linear matrix inequalities(LMIs).From this book, readers can learn about the general network attack modeling methods, resilient analysis and synthesis methods, active control methods from viewpoint of redundancy control, and secure conditions of power systems.Some fundamental knowledge prepared to read this book includes delay system theory, event triggered mechanism, T-S fuzzy system theory and frequency/voltage control of power system.
The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India
Stability theory has allowed us to study both qualitative and quantitative properties of dynamical systems, and control theory has played a key role in designing numerous systems. Contemporary sensing and communication n- works enable collection and subscription of geographically-distributed inf- mation and such information can be used to enhance signi?cantly the perf- manceofmanyofexisting systems. Throughasharedsensing/communication network,heterogeneoussystemscannowbecontrolledtooperaterobustlyand autonomously; cooperative control is to make the systems act as one group and exhibit certain cooperative behavior, and it must be pliable to physical and environmental constraints as well as be robust to intermittency, latency and changing patterns of the information ?ow in the network. This book attempts to provide a detailed coverage on the tools of and the results on analyzing and synthesizing cooperative systems. Dynamical systems under consideration can be either continuous-time or discrete-time, either linear or non-linear, and either unconstrained or constrained. Technical contents of the book are divided into three parts. The ?rst part consists of Chapters 1, 2, and 4. Chapter 1 provides an overview of coope- tive behaviors, kinematical and dynamical modeling approaches, and typical vehicle models. Chapter 2 contains a review of standard analysis and design tools in both linear control theory and non-linear control theory. Chapter 4 is a focused treatment of non-negativematrices and their properties,multipli- tive sequence convergence of non-negative and row-stochastic matrices, and the presence of these matrices and sequences in linear cooperative systems.
This book nds its origin in the WIDE PhD School on Networked Control Systems, which we organized in July 2009 in Siena, Italy. Having gathered experts on all the aspects of networked control systems, it was a small step to go from the summer school to the book, certainly given the enthusiasm of the lecturers at the school. We felt that a book collecting overviewson the important developmentsand open pr- lems in the eld of networked control systems could stimulate and support future research in this appealing area. Given the tremendouscurrentinterests in distributed control exploiting wired and wireless communication networks, the time seemed to be right for the book that lies now in front of you. The goal of the book is to set out the core techniques and tools that are ava- able for the modeling, analysis and design of networked control systems. Roughly speaking, the book consists of three parts. The rst part presents architectures for distributed control systems and models of wired and wireless communication n- works. In particular, in the rst chapter important technological and architectural aspects on distributed control systems are discussed. The second chapter provides insight in the behavior of communication channels in terms of delays, packet loss and information constraints leading to suitable modeling paradigms for commu- cation networks.