Network Theory and Financial Risk

Network Theory and Financial Risk

Author: Kimmo Soramäki

Publisher:

Published: 2022-04

Total Pages: 0

ISBN-13: 9781782724322

DOWNLOAD EBOOK

With new innovations in the field, this new edition of Network Theory and Financial Risk has been fully updated and expanded. A hands-on guide to analysing and modelling financial networks, authors Kimmo Soramäki and Samantha Cook provide an in-depth introduction to network theory and examine the general tools for network analysis. [Resumen de editor]


Contagion! Systemic Risk in Financial Networks

Contagion! Systemic Risk in Financial Networks

Author: T. R. Hurd

Publisher: Springer

Published: 2016-05-25

Total Pages: 146

ISBN-13: 3319339303

DOWNLOAD EBOOK

This volume presents a unified mathematical framework for the transmission channels for damaging shocks that can lead to instability in financial systems. As the title suggests, financial contagion is analogous to the spread of disease, and damaging financial crises may be better understood by bringing to bear ideas from studying other complex systems in our world. After considering how people have viewed financial crises and systemic risk in the past, it delves into the mechanics of the interactions between banking counterparties. It finds a common mathematical structure for types of crises that proceed through cascade mappings that approach a cascade equilibrium. Later chapters follow this theme, starting from the underlying random skeleton graph, developing into the theory of bootstrap percolation, ultimately leading to techniques that can determine the large scale nature of contagious financial cascades.


Network Theory and Agent-Based Modeling in Economics and Finance

Network Theory and Agent-Based Modeling in Economics and Finance

Author: Anindya S. Chakrabarti

Publisher: Springer Nature

Published: 2019-10-23

Total Pages: 454

ISBN-13: 9811383197

DOWNLOAD EBOOK

This book presents the latest findings on network theory and agent-based modeling of economic and financial phenomena. In this context, the economy is depicted as a complex system consisting of heterogeneous agents that interact through evolving networks; the aggregate behavior of the economy arises out of billions of small-scale interactions that take place via countless economic agents. The book focuses on analytical modeling, and on the econometric and statistical analysis of the properties emerging from microscopic interactions. In particular, it highlights the latest empirical and theoretical advances, helping readers understand economic and financial networks, as well as new work on modeling behavior using rich, agent-based frameworks. Innovatively, the book combines observational and theoretical insights in the form of networks and agent-based models, both of which have proved to be extremely valuable in understanding non-linear and evolving complex systems. Given its scope, the book will capture the interest of graduate students and researchers from various disciplines (e.g. economics, computer science, physics, and applied mathematics) whose work involves the domain of complexity theory.


Financial Risk Forecasting

Financial Risk Forecasting

Author: Jon Danielsson

Publisher: John Wiley & Sons

Published: 2011-04-20

Total Pages: 307

ISBN-13: 1119977118

DOWNLOAD EBOOK

Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.


Theory of Financial Risk and Derivative Pricing

Theory of Financial Risk and Derivative Pricing

Author: Jean-Philippe Bouchaud

Publisher: Cambridge University Press

Published: 2003-12-11

Total Pages: 410

ISBN-13: 1139440276

DOWNLOAD EBOOK

Risk control and derivative pricing have become of major concern to financial institutions, and there is a real need for adequate statistical tools to measure and anticipate the amplitude of the potential moves of the financial markets. Summarising theoretical developments in the field, this 2003 second edition has been substantially expanded. Additional chapters now cover stochastic processes, Monte-Carlo methods, Black-Scholes theory, the theory of the yield curve, and Minority Game. There are discussions on aspects of data analysis, financial products, non-linear correlations, and herding, feedback and agent based models. This book has become a classic reference for graduate students and researchers working in econophysics and mathematical finance, and for quantitative analysts working on risk management, derivative pricing and quantitative trading strategies.


Data Science for Economics and Finance

Data Science for Economics and Finance

Author: Sergio Consoli

Publisher: Springer Nature

Published: 2021

Total Pages: 357

ISBN-13: 3030668916

DOWNLOAD EBOOK

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.


Scenario Analysis in Risk Management

Scenario Analysis in Risk Management

Author: Bertrand K. Hassani

Publisher: Springer

Published: 2016-10-26

Total Pages: 171

ISBN-13: 3319250566

DOWNLOAD EBOOK

This book focuses on identifying and explaining the key determinants of scenario analysis in the context of operational risk, stress testing and systemic risk, as well as management and planning. Each chapter presents alternative solutions to perform reliable scenario analysis. The author also provides technical notes and describes applications and key characteristics for each of the solutions. In addition, the book includes a section to help practitioners interpret the results and adjust them to real-life management activities. Methodologies, including those derived from consensus strategies, extreme value theory, Bayesian networks, Neural networks, Fault Trees, frequentist statistics and data mining are introduced in such a way as to make them understandable to readers without a quantitative background. Particular emphasis is given to the added value of the implementation of these methodologies.


Practical Methods of Financial Engineering and Risk Management

Practical Methods of Financial Engineering and Risk Management

Author: Rupak Chatterjee

Publisher: Apress

Published: 2014-09-26

Total Pages: 379

ISBN-13: 143026134X

DOWNLOAD EBOOK

Risk control, capital allocation, and realistic derivative pricing and hedging are critical concerns for major financial institutions and individual traders alike. Events from the collapse of Lehman Brothers to the Greek sovereign debt crisis demonstrate the urgent and abiding need for statistical tools adequate to measure and anticipate the amplitude of potential swings in the financial markets—from ordinary stock price and interest rate moves, to defaults, to those increasingly frequent "rare events" fashionably called black swan events. Yet many on Wall Street continue to rely on standard models based on artificially simplified assumptions that can lead to systematic (and sometimes catastrophic) underestimation of real risks. In Practical Methods of Financial Engineering and Risk Management, Dr. Rupak Chatterjee— former director of the multi-asset quantitative research group at Citi—introduces finance professionals and advanced students to the latest concepts, tools, valuation techniques, and analytic measures being deployed by the more discerning and responsive Wall Street practitioners, on all operational scales from day trading to institutional strategy, to model and analyze more faithfully the real behavior and risk exposure of financial markets in the cold light of the post-2008 realities. Until one masters this modern skill set, one cannot allocate risk capital properly, price and hedge derivative securities realistically, or risk-manage positions from the multiple perspectives of market risk, credit risk, counterparty risk, and systemic risk. The book assumes a working knowledge of calculus, statistics, and Excel, but it teaches techniques from statistical analysis, probability, and stochastic processes sufficient to enable the reader to calibrate probability distributions and create the simulations that are used on Wall Street to valuate various financial instruments correctly, model the risk dimensions of trading strategies, and perform the numerically intensive analysis of risk measures required by various regulatory agencies.


Quantifying Systemic Risk

Quantifying Systemic Risk

Author: Joseph G. Haubrich

Publisher: University of Chicago Press

Published: 2013-01-24

Total Pages: 286

ISBN-13: 0226319288

DOWNLOAD EBOOK

In the aftermath of the recent financial crisis, the federal government has pursued significant regulatory reforms, including proposals to measure and monitor systemic risk. However, there is much debate about how this might be accomplished quantitatively and objectively—or whether this is even possible. A key issue is determining the appropriate trade-offs between risk and reward from a policy and social welfare perspective given the potential negative impact of crises. One of the first books to address the challenges of measuring statistical risk from a system-wide persepective, Quantifying Systemic Risk looks at the means of measuring systemic risk and explores alternative approaches. Among the topics discussed are the challenges of tying regulations to specific quantitative measures, the effects of learning and adaptation on the evolution of the market, and the distinction between the shocks that start a crisis and the mechanisms that enable it to grow.