NEHRP Recommended Provisions for the Development of Seismic Regulations for New Buildings: Commentary
Author: Building Seismic Safety Council (U.S.)
Publisher:
Published: 1985
Total Pages: 212
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Building Seismic Safety Council (U.S.)
Publisher:
Published: 1985
Total Pages: 212
ISBN-13:
DOWNLOAD EBOOKAuthor: Federal Emergency Management Agency
Publisher: Createspace Independent Pub
Published: 2013-01-25
Total Pages: 116
ISBN-13: 9781482079265
DOWNLOAD EBOOKOf the 500,000 or so detectable earthquakes that occur on Planet Earth each year, people will “feel” about 100,000 of them and about 100 will cause damage. Although most earthquakes are moderate in size and destructive potential, a severe earthquake occasionally strikes a community that is not adequately prepared and thousands of lives and billions of dollars in economic investment are lost. For example, a great earthquake and the fires it initiated destroyed much of San Francisco in 1906 and a significant portion of Anchorage, Alaska, was destroyed by a large earthquake in 1964. Within the past 200 years, major destructive earthquakes also occurred in Charleston, South Carolina, and Memphis, Tennessee. Within the past 50 years, smaller but damaging earthquakes occurred several times in both Los Angeles and Seattle. Overall, more than 20 states have a moderate or high risk of experiencing damaging earthquakes. Earthquakes are truly a national problem. One of the key ways a community protects itself from potential earthquake disasters is by adopting and enforcing a building code with appropriate seismic design and construction standards. The seismic requirements in U.S. model building codes and standards are updated through the volunteer efforts of design professionals and construction industry representatives under a process sponsored by the Federal Emergency Management Agency (FEMA) and administered by the Building Seismic Safety Council (BSSC). At regular intervals, the BSSC develops and FEMA publishes the NEHRP (National Earthquake Hazards Reduction Program) Recommended Seismic Provisions for New Buildings and Other Structures (referred to in this publication as the NEHRP Recommended Seismic Provisions or simply the Provisions). The Provisions serves as a resource used by the codes and standards development organizations as they formulate sound seismic-resistant design and construction requirements. The Provisions also provides design professionals, building officials, and educators with in-depth commentary on the intent and preferred application of the seismic regulations. The 2009 edition of the Provisions (FEMA P-750) and the building codes and consensus standards based on its recommendations are, of necessity, highly technical documents intended primarily for use by design professionals and others who have specialized technical training. This introduction to the NEHRP Recommended Seismic Provisions is intended to provide these interested individuals with a readily understandable explanation of the intent of the earthquake-resistant design and requirements of the Provisions. Chapter 1 explains the history and purpose of building regulation in the United States, including the process used to develop and adopt the nation's building codes and the seismic requirements in these codes. Chapter 2 is an overview of the performance intent of the Provisions. Among the topics addressed are the national seismic hazard maps developed by the U.S. Geological Survey (USGS); the seismic design maps adopted by the Provisions as a basis for seismic design; and seismic risk, which is a function of both the probability that a community will experience intense earthquake ground shaking and the probability that building construction will suffer significant damage because of this ground motion. Chapter 3 identifies the design and construction features of buildings and other structures that are important to good seismic performance. Chapter 4 describes the various types of structures and nonstructural components addressed by the Provisions. Chapter 5 is an overview of the design procedures contained in the Provisions. Chapter 6 addresses how the practice of earthquake-resistant design is likely to evolve in the future. A glossary of key technical terms, lists of notations and acronyms used in this report, and a selected bibliography identifying references that may be of interest to some readers complete this report.
Author: United States. Federal Emergency Management Agency
Publisher:
Published: 2001
Total Pages: 468
ISBN-13:
DOWNLOAD EBOOKAuthor: Farzad Naeim
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 816
ISBN-13: 1461516935
DOWNLOAD EBOOKThis handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.
Author:
Publisher: FEMA
Published: 2004
Total Pages: 357
ISBN-13:
DOWNLOAD EBOOKThe 2003 edition of the NEHRP Recommended Provisions contains several significant changes, including: a reformatting to improve its usability; introduction of a simplified design procedure, an updating of the seismic design maps and how they are presented; a modification in the redundancy factor; the addition of ultimate strength design provisions for foundations; the addition of several new structural systems, including buckling restrained braced frames and steel plate shear walls; structures with damping systems has been moved from an appendix to a new chapter; and inclusion of new or updated material industry reference standards for steel, concrete, masonry, and wood.
Author:
Publisher:
Published: 1997
Total Pages: 452
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher: Government Printing Office
Published: 2015
Total Pages: 206
ISBN-13: 9780160926754
DOWNLOAD EBOOKThe Rapid Visual Screening (RVS) handbook can be used by trained personnel to identify, inventory, and screen buildings that are potentially seismically vulnerable. The RVS procedure comprises a method and several forms that help users to quickly identify, inventory, and score buildings according to their risk of collapse if hit by major earthquakes. The RVS handbook describes how to identify the structural type and key weakness characteristics, how to complete the screening forms, and how to manage a successful RVS program.
Author:
Publisher:
Published: 1998
Total Pages: 364
ISBN-13:
DOWNLOAD EBOOKAuthor: National Research Council
Publisher: National Academies Press
Published: 2011-09-09
Total Pages: 197
ISBN-13: 0309186773
DOWNLOAD EBOOKThe United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
Author: Federal Emergency Agency
Publisher: FEMA
Published: 2013-03-16
Total Pages: 11
ISBN-13:
DOWNLOAD EBOOKThis report, FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings has been developed by the SAC Joint Venture under contract to the Federal Emergency Management Agency (FEMA) to provide organizations engaged in the development of consensus design standards and building code provisions with recommended criteria for the design and construction of new buildings incorporating moment-resisting steel frame construction to resist the effects of earthquakes. It is one of a series of companion publications addressing the issue of the seismic performance of steel moment-frame buildings. The set of companion publications includes: FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. This publication provides recommended criteria, supplemental to FEMA-302 - 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, for the design and construction of steel moment-frame buildings and provides alternative performance-based design criteria. FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. This publication provides recommended methods to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to retrofit these buildings for improved performance. FEMA-352 - Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings. This publication provides recommendations for performing postearthquake inspections to detect damage in steel moment-frame buildings following an earthquake, evaluating the damaged buildings to determine their safety in the postearthquake environment, and repairing damaged buildings. FEMA-353 - Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications. This publication provides recommended specifications for the fabrication and erection of steel moment frames for seismic applications. The recommended design criteria contained in the other companion documents are based on the material and workmanship standards contained in this document, which also includes discussion of the basis for the quality control and quality assurance criteria contained in the recommended specifications. The information contained in these recommended design criteria, hereinafter referred to as Recommended Criteria, is presented in the form of specific design and performance evaluation procedures together with supporting commentary explaining part of the basis for these recommendations.