Light-Emitting Diodes and Photodetectors

Light-Emitting Diodes and Photodetectors

Author: Maurizio Casalino

Publisher: BoD – Books on Demand

Published: 2021-09-29

Total Pages: 208

ISBN-13: 1839685557

DOWNLOAD EBOOK

This book provides a detailed overview of the most recent advances in the fascinating world of light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), and photodetectors (PDs). Chapters in Section 1 discuss the different types and designs of LEDs/OLEDs and their use in light output, color rendering, and more. Chapters in Section 2 examine innovative structures, emerging materials, and physical effects of PDs. This book is a useful resource for students and scientists working in the field of photonics and advanced technologies.


Miniaturized Silicon Photodetectors

Miniaturized Silicon Photodetectors

Author: Maurizio Casalino

Publisher: MDPI

Published: 2021-01-15

Total Pages: 148

ISBN-13: 3036500448

DOWNLOAD EBOOK

Silicon (Si) technologies provide an excellent platform for the design of microsystems where photonic and microelectronic functionalities are monolithically integrated on the same substrate. In recent years, a variety of passive and active Si photonic devices have been developed, and among them, photodetectors have attracted particular interest from the scientific community. Si photodiodes are typically designed to operate at visible wavelengths, but, unfortunately, their employment in the infrared (IR) range is limited due to the neglectable Si absorption over 1100 nm, even though the use of germanium (Ge) grown on Si has historically allowed operations to be extended up to 1550 nm. In recent years, significant progress has been achieved both by improving the performance of Si-based photodetectors in the visible range and by extending their operation to infrared wavelengths. Near-infrared (NIR) SiGe photodetectors have been demonstrated to have a “zero change” CMOS process flow, while the investigation of new effects and structures has shown that an all-Si approach could be a viable option to construct devices comparable with Ge technology. In addition, the capability to integrate new emerging 2D and 3D materials with Si, together with the capability of manufacturing devices at the nanometric scale, has led to the development of new device families with unexpected performance. Accordingly, this Special Issue of Micromachines seeks to showcase research papers, short communications, and review articles that show the most recent advances in the field of silicon photodetectors and their respective applications.


Photovoltaic Solar Energy

Photovoltaic Solar Energy

Author: Angèle Reinders

Publisher: John Wiley & Sons

Published: 2017-02-06

Total Pages: 755

ISBN-13: 111892746X

DOWNLOAD EBOOK

Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date account of existing PV technologies in conjunction with an assessment of technological developments. Key features: Written by leading specialists active in concurrent developments in material sciences, solar cell research and application-driven R&D. Provides a basic knowledge base in light, photons and solar irradiance and basic functional principles of PV. Covers characterization techniques, economics and applications of PV such as silicon, thin-film and hybrid solar cells. Presents a compendium of PV technologies including: crystalline silicon technologies; chalcogenide thin film solar cells; thin-film silicon based PV technologies; organic PV and III-Vs; PV concentrator technologies; space technologies and economics, life-cycle and user aspects of PV technologies. Each chapter presents basic principles and formulas as well as major technological developments in a contemporary context with a look at future developments in this rapidly changing field of science and engineering. Ideal for industrial engineers and scientists beginning careers in PV as well as graduate students undertaking PV research and high-level undergraduate students.


2D Metal Carbides and Nitrides (MXenes)

2D Metal Carbides and Nitrides (MXenes)

Author: Babak Anasori

Publisher: Springer Nature

Published: 2019-10-30

Total Pages: 530

ISBN-13: 3030190269

DOWNLOAD EBOOK

This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.


Inorganic Flexible Optoelectronics

Inorganic Flexible Optoelectronics

Author: Zhenqiang Ma

Publisher: John Wiley & Sons

Published: 2019-04-29

Total Pages: 430

ISBN-13: 3527812989

DOWNLOAD EBOOK

Comprehensively covering inorganic flexible optoelectronics and their applications This highly application-oriented book provides an overview of the vibrant research field of inorganic flexible optoelectronics ? from materials to applications ? covering bulk materials as well as nanowires, thin films, nanomembranes for application in light emitting diodes, photodetectors, phototransistors, and solar cells. Edited and written by world-leading experts in the field, Inorganic Flexible Optoelectronics: Materials and Applications begins by covering flexible inorganic light emitting diodes enabled by new materials and designs, and provides examples of their use in neuroscience research. It then looks at flexible light-emitting diodes based on inorganic semiconductor nanostructures ? from thin films to nanowires. Next, the book examines flexible photodetectors with nanomembranes and nanowires; 2-D material based photodetectors on flexible substrates; and IV group materials based solar cells and their flexible photovoltaic technologies. Following that, it presents readers with a section on thin-film III-V single junction and multijunction solar cells and demonstrates their integration onto heterogeneous substrates. Finally, the book finishes with in-depth coverage of novel materials based flexible solar cells. -A must-have book that provides an unprecedented overview of the state of the art in flexible optoelectronics -Supplies in-depth information for new and already active researchers in the field of optoelectronics -Lays down the undiluted knowledge on inorganic flexible optoelectronics ? from materials to devices -Focuses on materials and devices for high-performance applications such as light-emitting diodes, solar cells, and photodetectors Inorganic Flexible Optoelectronics: Materials and Applications appeals to materials scientists, electronics engineers, electrical engineers, inorganic chemists, and solid state physicists.


Graphene for Post-Moore Silicon Optoelectronics

Graphene for Post-Moore Silicon Optoelectronics

Author: Yang Xu

Publisher: John Wiley & Sons

Published: 2023-04-03

Total Pages: 197

ISBN-13: 3527351817

DOWNLOAD EBOOK

Provides timely coverage of an important research area that is highly relevant to advanced detection and control technology Projecting device performance beyond the scaling limits of Moore’s law requires technologies based on novel materials and device architecture. Due to its excellent electronic, thermal, and optical properties, graphene has emerged as a scalable, low-cost material with enormous integration possibilities for numerous optoelectronic applications. Graphene for Post-Moore Silicon Optoelectronics presents an up-to-date overview of the fundamentals, applications, challenges, and opportunities of integrating graphene and other 2D materials with silicon (Si) technologies. With an emphasis on graphene-silicon (Gr/Si) integrated devices in optoelectronics, this valuable resource also addresses emerging applications such as optoelectronic synaptic devices, optical modulators, and infrared image sensors. The book opens with an introduction to graphene for silicon optoelectronics, followed by chapters describing the growth, transfer, and physics of graphene/silicon junctions. Subsequent chapters each focus on a particular Gr/Si application, including high-performance photodetectors, solar energy harvesting devices, and hybrid waveguide devices. The book concludes by offering perspectives on the future challenges and prospects of Gr/Si optoelectronics, including the emergence of wafer-scale systems and neuromorphic optoelectronics. Illustrates the benefits of graphene-based electronics and hybrid device architectures that incorporate existing Si technology Covers all essential aspects of Gr/Si devices, including material synthesis, device fabrication, system integration, and related physics Summarizes current progress and future challenges of wafer-scale 2D-Si integrated optoelectronic devices Explores a wide range of Gr/Si devices, such as synaptic phototransistors, hybrid waveguide modulators, and graphene thermopile image sensors Graphene for Post-Moore Silicon Optoelectronics is essential reading for materials scientists, electronics engineers, and chemists in both academia and industry working with the next generation of Gr/Si devices.


Charge and Spin Transport in Disordered Graphene-Based Materials

Charge and Spin Transport in Disordered Graphene-Based Materials

Author: Dinh Van Tuan

Publisher: Springer

Published: 2015-10-22

Total Pages: 162

ISBN-13: 3319255711

DOWNLOAD EBOOK

This thesis presents an in-depth theoretical analysis of charge and spin transport properties in complex forms of disordered graphene. It relies on innovative real space computational methods of the time-dependent spreading of electronic wave packets. First a universal scaling law of the elastic mean free path versus the average grain size is predicted for polycrystalline morphologies, and charge mobilities of up to 300.000 cm2/V.s are determined for 1 micron grain size, while amorphous graphene membranes are shown to behave as Anderson insulators. An unprecedented spin relaxation mechanism, unique to graphene and driven by spin/pseudospin entanglement is then reported in the presence of weak spin-orbit interaction (gold ad-atom impurities) together with the prediction of a crossover from a quantum spin Hall Effect to spin Hall effect (for thallium ad-atoms), depending on the degree of surface ad-atom segregation and the resulting island diameter.


Graphene Photonics

Graphene Photonics

Author: Jia-Ming Liu

Publisher: Cambridge University Press

Published: 2018-12-13

Total Pages: 271

ISBN-13: 1108476686

DOWNLOAD EBOOK

Graphene is a single-layer crystal of carbon, the thinnest two-dimensional material. It has unique electronic and photonic properties.


New Research on Silicon

New Research on Silicon

Author: Vitalyi Igorevich Talanin

Publisher: BoD – Books on Demand

Published: 2017-05-31

Total Pages: 306

ISBN-13: 9535131591

DOWNLOAD EBOOK

The knowledge of fundamental silicon questions and all aspects of silicon technology gives the possibility of improvement to both initial silicon material and devices on silicon basis. The articles for this book have been contributed by the much respected researchers in this area and cover the most recent developments and applications of silicon technology and some fundamental questions. This book provides the latest research developments in important aspects of silicon including nanoclusters, solar silicon, porous silicon, some technological processes, and silicon devices and also fundamental question about silicon structural perfection. This book is of interest both to fundamental research and to practicing scientists and also will be useful to all engineers and students in industry and academia.