Bio-optical Modeling and Remote Sensing of Inland Waters

Bio-optical Modeling and Remote Sensing of Inland Waters

Author: Deepak R. Mishra

Publisher: Elsevier

Published: 2017-04-28

Total Pages: 334

ISBN-13: 0128046546

DOWNLOAD EBOOK

Bio-optical Modeling and Remote Sensing of Inland Waters presents the latest developments, state-of-the-art, and future perspectives of bio-optical modeling for each optically active component of inland waters, providing a broad range of applications of water quality monitoring using remote sensing. Rather than discussing optical radiometry theories, the authors explore the applications of these theories to inland aquatic environments. The book not only covers applications, but also discusses new possibilities, making the bio-optical theories operational, a concept that is of great interest to both government and private sector organizations. In addition, it addresses not only the physical theory that makes bio-optical modeling possible, but also the implementation and applications of bio-optical modeling in inland waters. Early chapters introduce the concepts of bio-optical modeling and the classification of bio-optical models and satellite capabilities both in existence and in development. Later chapters target specific optically active components (OACs) for inland waters and present the current status and future direction of bio-optical modeling for the OACs. Concluding sections provide an overview of a governance strategy for global monitoring of inland waters based on earth observation and bio-optical modeling. - Presents comprehensive chapters that each target a different optically active component of inland waters - Contains contributions from respected and active professionals in the field - Presents applications of bio-optical modeling theories that are applicable to researchers, professionals, and government agencies


Remote Sensing of Coastal Aquatic Environments

Remote Sensing of Coastal Aquatic Environments

Author: Richard L. Miller

Publisher: Springer Science & Business Media

Published: 2007-03-22

Total Pages: 378

ISBN-13: 9781402030994

DOWNLOAD EBOOK

This book provides extensive insight on remote sensing of coastal waters from aircraft and space-based platforms. The primary focus of the book is optical remote sensing using passive instruments, to measure and analyze the coastal aquatic environment. The authors have gathered information from a variety of sources, to help non-specialists grasp new techniques and technology, to quickly produce useful data


Remote Sensing of Coastal Aquatic Environments

Remote Sensing of Coastal Aquatic Environments

Author: Richard L. Miller

Publisher: Springer Science & Business Media

Published: 2007-03-06

Total Pages: 357

ISBN-13: 1402031009

DOWNLOAD EBOOK

This book provides extensive insight on remote sensing of coastal waters from aircraft and space-based platforms. The primary focus of the book is optical remote sensing using passive instruments, to measure and analyze the coastal aquatic environment. The authors have gathered information from a variety of sources, to help non-specialists grasp new techniques and technology, to quickly produce useful data


Remote Sensing of Aquatic Coastal Ecosystem Processes

Remote Sensing of Aquatic Coastal Ecosystem Processes

Author: Laurie L. Richardson

Publisher: Springer Science & Business Media

Published: 2006-06-11

Total Pages: 330

ISBN-13: 1402039689

DOWNLOAD EBOOK

The aquatic coastal zone is one of the most challenging targets for environmental remote sensing. Properties such as bottom reflectance, spectrally diverse suspended sediments and phytoplankton communities, diverse benthic communities, and transient events that affect surface reflectance (coastal blooms, runoff, etc.) all combine to produce an optical complexity not seen in terrestrial or open ocean systems. Despite this complexity, remote sensing is proving to be an invaluable tool for "Case 2" waters. This book presents recent advances in coastal remote sensing with an emphasis on applied science and management. Case studies of the operational use of remote sensing in ecosystem studies, monitoring, and interfacing remote sensing/science/management are presented. Spectral signatures of phytoplankton and suspended sediments are discussed in detail with accompanying discussion of why blue water (Case 1) algorithms cannot be applied to Case 2 waters. Audience This book is targeted for scientists and managers interested in using remote sensing in the study or management of aquatic coastal environments. With only limited discussion of optics and theory presented in the book, such researchers might benefit from the detailed presentations of aquatic spectral signatures, and to operational management issues. While not specifically written for remote sensing scientists, it will prove to be a useful reference for this community for the current status of aquatic coastal remote sensing.


Sediment Transport in Coastal Waters

Sediment Transport in Coastal Waters

Author: Sylvain Ouillon

Publisher: MDPI

Published: 2019-04-11

Total Pages: 284

ISBN-13: 3038978442

DOWNLOAD EBOOK

The interface of 440,000 km long coastline in the world is subject to global change, with an increasing human pressure (land use, buildings, sand mining, dredging) and increasing population. Improving our knowledge on involved mechanisms and sediment transport processes, monitoring the evolution of sedimentary stocks and anticipating changes in littoral and coastal zones is essential for this purpose. The special issue of Water on “Sediment transport in coastal waters” gathers thirteen papers which introduce the current revolution in the scientific research related to coastal and littoral hydrosedimentary dynamics, and reflect the diversity of concerns on which research in coastal sediment transport is based, and current trends — topics and preferred methods — to address them.


Fiducial Reference Measurements for Satellite Ocean Colour

Fiducial Reference Measurements for Satellite Ocean Colour

Author: Andrew Clive Banks

Publisher:

Published: 2020

Total Pages: 508

ISBN-13: 9783039430659

DOWNLOAD EBOOK

Ocean color measured by satellite-mounted optical sensors is an essential climate variable that is routinely used as a central element for assessing the health and productivity of marine ecosystems and the role of oceans in the global carbon cycle. For satellite ocean color to be reliable and used in these and other important environmental applications, the data must be trustworthy and high quality. Pre-flight and on-board calibration of satellite ocean color sensors is conducted; however, once in orbit, the data quality can only be fully assessed via independent calibration and validation activities using surface measurements. These measurements therefore need to be at least as high quality as the satellite data, which necessitates SI traceability and a full uncertainty budget. This is the basis for fiducial reference measurements (FRMs) and the FRM4SOC project, which was an European Space Agency (ESA) initiative to establish and maintain SI-traceable ground-based FRM for satellite ocean color, thus providing a fundamental contribution to the European system for monitoring the Earth (Copernicus). This Special Issue of MDPI Remote Sensing is designed to showcase this essential Earth observation work through the publication of the project's main achievements and results accompanied by other select relevant articles.


Real-time Coastal Observing Systems for Marine Ecosystem Dynamics and Harmful Algal Blooms

Real-time Coastal Observing Systems for Marine Ecosystem Dynamics and Harmful Algal Blooms

Author: Babin, Marcel

Publisher: UNESCO

Published: 2008-06-05

Total Pages: 880

ISBN-13: 9231040421

DOWNLOAD EBOOK

The proliferation of harmful phytoplankton in marine ecosystems can cause massive fish kills, contaminate seafood with toxins, impact local and regional economies and dramatically affect ecological balance. Real-time observations are essential for effective short-term operational forecasting, but observation and modelling systems are still being developed. This volume provides guidance for developing real-time and near real-time sensing systems for observing and predicting plankton dynamics, including harmful algal blooms, in coastal waters. The underlying theory is explained and current trends in research and monitoring are discussed.Topics covered include: coastal ecosystems and dynamics of harmful algal blooms; theory and practical applications of in situ and remotely sensed optical detection of microalgal distributions and composition; theory and practical applications of in situ biological and chemical sensors for targeted species and toxin detection; integrated observing systems and platforms for detection; diagnostic and predictive modelling of ecosystems and harmful algal blooms, including data assimilation techniques; observational needs for the public and government; and future directions for research and operations.


Coral Reef Remote Sensing

Coral Reef Remote Sensing

Author: James A. Goodman

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 446

ISBN-13: 9048192927

DOWNLOAD EBOOK

Remote sensing stands as the defining technology in our ability to monitor coral reefs, as well as their biophysical properties and associated processes, at regional to global scales. With overwhelming evidence that much of Earth’s reefs are in decline, our need for large-scale, repeatable assessments of reefs has never been so great. Fortunately, the last two decades have seen a rapid expansion in the ability for remote sensing to map and monitor the coral reef ecosystem, its overlying water column, and surrounding environment. Remote sensing is now a fundamental tool for the mapping, monitoring and management of coral reef ecosystems. Remote sensing offers repeatable, quantitative assessments of habitat and environmental characteristics over spatially extensive areas. As the multi-disciplinary field of coral reef remote sensing continues to mature, results demonstrate that the techniques and capabilities continue to improve. New developments allow reef assessments and mapping to be performed with higher accuracy, across greater spatial areas, and with greater temporal frequency. The increased level of information that remote sensing now makes available also allows more complex scientific questions to be addressed. As defined for this book, remote sensing includes the vast array of geospatial data collected from land, water, ship, airborne and satellite platforms. The book is organized by technology, including: visible and infrared sensing using photographic, multispectral and hyperspectral instruments; active sensing using light detection and ranging (LiDAR); acoustic sensing using ship, autonomous underwater vehicle (AUV) and in-water platforms; and thermal and radar instruments. Emphasis and Audience This book serves multiple roles. It offers an overview of the current state-of-the-art technologies for reef mapping, provides detailed technical information for coral reef remote sensing specialists, imparts insight on the scientific questions that can be tackled using this technology, and also includes a foundation for those new to reef remote sensing. The individual sections of the book include introductory overviews of four main types of remotely sensed data used to study coral reefs, followed by specific examples demonstrating practical applications of the different technologies being discussed. Guidelines for selecting the most appropriate sensor for particular applications are provided, including an overview of how to utilize remote sensing data as an effective tool in science and management. The text is richly illustrated with examples of each sensing technology applied to a range of scientific, monitoring and management questions in reefs around the world. As such, the book is broadly accessible to a general audience, as well as students, managers, remote sensing specialists and anyone else working with coral reef ecosystems.