TRB’s National Cooperative Highway Research Program (NCHRP) 415: Design Fires in Road Tunnels information on the state of the practice of design fires in road tunnels, focusing on tunnel fire dynamics and the means of fire management for design guidance.
This report from the second Strategic Highway Research Program (SHRP 2), which is administered by the Transportation Research Board of the National Academies, focuses on improving the ability of highway agencies to design and construct long-lasting highway projects with minimal disruption to the traveling public.
This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all engineers and public officials who are concerned with the nature, prevention, and management of tunnel fires.
Underground Engineering: Planning, Design, Construction and Operation of the Underground Space provides the author's vast experience as both an academic and practitioner. It covers Planning, Design, Construction and the Operation of Underground Structures. Targeted at young professionals, students and researchers new to the field, the book contains examples, illustrations and cases from diverse underground uses, from roads to disposal facilities. Sections cover the history of the field, upcoming challenges, the planning stage of the subsurface use, including financial planning and reliability forecasting, site investigation, instrumentation and modeling, construction techniques and challenges, and more. Young professionals in this area will benefit from the updated and complete overview of Underground Engineering. Students will find the examples and cases particularly didactic. Richly illustrated, this book is an excellent resource for all involved in the development of the underground space. - Offers a complete introduction to the area, including planning, design, construction and the operation of underground structures - Assumes little previous knowledge from readers - Presents the most recent techniques and future technical trends - Richly illustrated and packed with examples to help readers understand the fundamentals of the area
This book illustrates a new quantitative risk analysis model for road tunnels that is capable of evaluating the role of infrastructure measures, equipment and management procedures as prescribed by EU Directive 2004/54/EC. The risk assessment draws on the typical F-N curves of societal risk, evaluated with the help of event tree analysis, vehicle queue formation dynamics, and users’ egress and tenability models. In addition, the model considers the reliability of the safety measures. The work provides essential guidance on the following aspects: how a quantitative model can be implemented to evaluate risk in road tunnels; how to build an event tree for the accident scenarios considered; how to simulate the vehicle queue formation; how to simulate the evolution of accident scenarios; and how to simulate the users’ egress. Given its scope and depth of coverage, the book will be of interest to all engineers whose work involves fire protection and safety in tunnels, all persons engaged in safety and transport engineering or risk analysis for road tunnels, as well as public and private bodies involved in the application of Directive 2004/54/EC.
Get a complete look into modern traffic engineering solutions Traffic Engineering Handbook, Seventh Edition is a newly revised text that builds upon the reputation as the go-to source of essential traffic engineering solutions that this book has maintained for the past 70 years. The updated content reflects changes in key industry standards, and shines a spotlight on the needs of all users, the design of context-sensitive roadways, and the development of more sustainable transportation solutions. Additionally, this resource features a new organizational structure that promotes a more functionally-driven, multimodal approach to planning, designing, and implementing transportation solutions. A branch of civil engineering, traffic engineering concerns the safe and efficient movement of people and goods along roadways. Traffic flow, road geometry, sidewalks, crosswalks, cycle facilities, shared lane markings, traffic signs, traffic lights, and more—all of these elements must be considered when designing public and private sector transportation solutions. Explore the fundamental concepts of traffic engineering as they relate to operation, design, and management Access updated content that reflects changes in key industry-leading resources, such as the Highway Capacity Manual (HCM), Manual on Uniform Traffic Control Devices (MUTCD), AASSHTO Policy on Geometric Design, Highway Safety Manual (HSM), and Americans with Disabilities Act Understand the current state of the traffic engineering field Leverage revised information that homes in on the key topics most relevant to traffic engineering in today's world, such as context-sensitive roadways and sustainable transportation solutions Traffic Engineering Handbook, Seventh Edition is an essential text for public and private sector transportation practitioners, transportation decision makers, public officials, and even upper-level undergraduate and graduate students who are studying transportation engineering.
Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.
This second edition of Concrete Pavement Design, Construction, and Performance provides a solid foundation for pavement engineers seeking relevant and applicable design and construction instruction. It relies on general principles instead of specific ones, and incorporates illustrative case studies and prime design examples to highlight the material. It presents a thorough understanding of materials selection, mixture proportioning, design and detailing, drainage, construction techniques, and pavement performance. It also offers insight into the theoretical framework underlying commonly used design procedures as well as the limits of the applicability of the procedures. All chapters have been updated to reflect recent developments, including some alternative and emerging design technologies that improve sustainability. What’s New in the Second Edition: The second edition of this book contains a new chapter on sustainability, and coverage of mechanistic-empirical design and pervious concrete pavements. RCC pavements are now given a new chapter. The text also expands the industrial pavement design chapter. Outlines alternatives for concrete pavement solutions Identifies desired performance and behavior parameters Establishes appropriate materials and desired concrete proportions Presents steps for translating the design into a durable facility The book highlights significant innovations such as one is two-lift concrete pavements, precast concrete pavement systems, RCC pavement, interlocking concrete pavers, thin concrete pavement design, and pervious concrete. This text also addresses pavement management, maintenance, rehabilitation, and overlays.