Protocols for Collecting and Using Traffic Data in Bridge Design

Protocols for Collecting and Using Traffic Data in Bridge Design

Author: Bala Sivakumar

Publisher: Transportation Research Board

Published: 2011

Total Pages: 125

ISBN-13: 0309155479

DOWNLOAD EBOOK

TRB's National Cooperative Highway Research Program (NCHRP) Report 683: Protocols for Collecting and Using Traffic Data in Bridge Design explores a set of protocols and methodologies for using available recent truck traffic data to develop and calibrate vehicular loads for superstructure design, fatigue design, deck design, and design for overload permits. The protocols are geared to address the collection, processing, and use of national weigh-in-motion (WIM) data. The report also gives practical examples of implementing these protocols with recent national WIM data drawn from states/sites around the country with different traffic exposures, load spectra, and truck configurations. The material in this report will be of immediate interest to bridge engineers. This report replaces NCHRP Web-Only Document 135: Protocols for Collecting and Using Traffic Data in Bridge Design. Appendices A through F for NCHRP Report 683 are available only online.


Equipment for Collecting Traffic Load Data

Equipment for Collecting Traffic Load Data

Author: Mark E. Hallenbeck

Publisher: Transportation Research Board

Published: 2004

Total Pages: 68

ISBN-13: 0309087880

DOWNLOAD EBOOK

Introduction -- Types of equipment -- Technology descriptions -- A process for selecting equipment -- Best practices for equipment use -- Abbreviations used without definitions in TRB publications.


Synthesis of Pavement Issues Related to High-speed Corridors

Synthesis of Pavement Issues Related to High-speed Corridors

Author: Joe W. Button

Publisher:

Published: 2004

Total Pages: 180

ISBN-13:

DOWNLOAD EBOOK

The objective of this research project was to produce a synthesis of available information to support specific areas related to pavements for the safe, economical development of the Trans Texas Corridor (TTC). This synthesis is divided into nine sections, each of which deals with a specific topic or topics. These specific areas include (1) pavement design for heavy vehicles, (2) pavement design for light vehicles, (3) skid resistance issues on high-speed corridors, (4) issues related to traffic characterization, (5) smart pavements for high-speed corridors, (6) pavement material response to dynamic loads and performance prediction, (7) safety issues related to splash and spray, and (8) ride quality for high-speed corridors. Regarding these stated issues, this synthesis recommends state-of-the-art technology to the Texas Department of Transportation (TxDOT) for use during development of the TTC. It provides recommendations for future research to fill gaps in knowledge and to take emerging technology to the stage where it can be implemented during the design and construction of the TTC pavements. This is the first synthesis study to address issues related to the TTC. A secondary objective of this project was to determine if additional synthesis studies in other areas of transportation related to the TTC should be conducted and, if so, how the process might be improved. This synthesis recommends that future syntheses should be more focused on specific, maybe critical, issue(s); the researcher should be instructed to present only those findings that are really new, innovative, and potentially implementable. One element of the study should pursue non-transportation related technology that might be adapted to transportation issues.


Bridge Traffic Loading

Bridge Traffic Loading

Author: Eugene OBrien

Publisher: CRC Press

Published: 2021-12-03

Total Pages: 236

ISBN-13: 1000459918

DOWNLOAD EBOOK

There is considerable uncertainty about what level of traffic loading bridges should be designed for. Codes specify notional load models, generally to represent extreme levels of normal traffic, but these are often crude and have inconsistent levels of safety for different load effects. Over the past few decades, increasing quantities of reliable truck weight data has become available and it is now possible to calculate appropriate levels of bridge traffic loading, both for specific bridges and for a road network. Bridge Traffic Loading brings together experts from all over the world to deliver not just the state-of-the-art of vertical loading, but also to provide recommendations of best-practice for all the major challenges in the field – short-span, single and multi-lane bridge loading, dynamic allowance and long-span bridges. It reviews issues that continue to be debated, such as which statistical distribution is most appropriate, whether free-flowing or congested traffic governs and dealing with future traffic growth. Specialist consultants and bridge owners should find this invaluable, as will regulators.