Performance of Epoxy-coated Reinforcing Steel in Highway Bridges
Author: Kenneth C. Clear
Publisher: Transportation Research Board
Published: 1995
Total Pages: 164
ISBN-13: 9780309053709
DOWNLOAD EBOOKRead and Download eBook Full
Author: Kenneth C. Clear
Publisher: Transportation Research Board
Published: 1995
Total Pages: 164
ISBN-13: 9780309053709
DOWNLOAD EBOOKAuthor: Joan R. Casas
Publisher:
Published: 1996
Total Pages: 648
ISBN-13:
DOWNLOAD EBOOKAuthor: National Cooperative Highway Research Program
Publisher:
Published: 2009
Total Pages: 156
ISBN-13:
DOWNLOAD EBOOKAuthor: National Cooperative Highway Research Program
Publisher:
Published: 2002
Total Pages: 240
ISBN-13:
DOWNLOAD EBOOKAuthor: Asko Sarja
Publisher: RILEM Publications
Published: 2000
Total Pages: 584
ISBN-13: 9789517584081
DOWNLOAD EBOOKAuthor: Jerzy Zemajtis
Publisher:
Published: 1999
Total Pages: 80
ISBN-13:
DOWNLOAD EBOOKCorrosion inhibitor admixtures (CIA) and galvanized reinforcing steel (GS) are used for the corrosion protection for reinforced concrete bridges. The results of a 3.5-year evaluation of exposure specimens containing CIA from three different manufacturers and GS are presented. The specimens were built to simulate four exposure conditions typical for concrete bridges located in the coastal region or inland where deicing salts are used. The exposure conditions were Horizontal, Vertical, Tidal, and Immersed Zones. The specimens were kept inside the laboratory and were exposed to weekly ponding cycles of 6% sodium chloride solution by weight. The methods used to assess the condition of the specimens included chloride concentration measurements, corrosion potentials, and corrosion rates. Additionally, visual observations were performed for identification of rust stains and cracking on concrete surfaces. The results of chloride testing indicate that the amount of chlorides present at the bar level is more than sufficient to initiate corrosion. Chloride and rapid permeability data indicate no significant difference either in a rate of chloride ingress or in the diffusion coefficients for concretes with and without CIA. Corrosion potentials were the most negative for the Bare Steel (BS) specimen prepared with the Armatec 2000 corrosion inhibitor and generally indicated a 90% probability of active corrosion. Corrosion potentials were similar for the two BS control specimens and the BS specimen prepared with Rheocrete 222 and generally indicated an uncertain probability of corrosion. Corrosion potentials were the least negative for the BS specimen prepared with DCI-S corrosion inhibitor and generally indicated a 90% probability of no corrosion. Rate of corrosion measurements were the highest for the BS control specimens and the one prepared with A2000 and the most recent data suggest corrosion damage in 2 to 10 years. Although early rate of corrosion measurements were higher or about the same as for BS control specimens, recent measurements were slightly lower for the specimen prepared with Rheocrete 222 and suggest corrosion damage in 10 to 15 years. Rate of corrosion measurements were consistently the lowest for the BS specimens prepared with DCI-S and indicate corrosion damage is expected in 10 to 15 years. The corrosion potential and rate of corrosion data indicate that DCI-S is the only CIA evaluated that clearly provides some level of corrosion protection. A direct comparison of the GS specimens to the BS specimens is not possible because the measured potential refers to the zinc oxide and not to the steel. Nevertheless, the potential data agree with the chloride and permeability data, as well as with the visual observations, and indicate the damaging effect of a high concentration of chloride ions on the GS. At low and moderate chloride exposures, however, GS does provide corrosion protection. Recommendations are to continue monitoring until sufficient cracking has occurred in all specimens to provide for making a better estimate of the service lives of CIA and GS used in the construction of concrete bridge components in Virginia. The specimens with CIA and one control (continuous reinforcement in the legs) should be taken to the Hampton Road North Tunnel Island and placed in the brackish water to a depth of the Immersed Zone at low tide for further exposure to chloride. The specimens with GS and the other control (non-continuous reinforcement in the legs) should remain in an outdoor exposure in Southwest Virginia like the Civil Engineering Materials Research Laboratory in Blacksburg, Virginia.
Author: Wioleta A. Pyć
Publisher:
Published: 1998
Total Pages: 58
ISBN-13:
DOWNLOAD EBOOKWe used a simulated concrete pore water solution to evaluate the corrosion protection performance of concrete corrosion-inhibiting admixtures and epoxy-coated reinforcing bars (ECR). We evaluated three commercial corrosion inhibitors, ECR from three coaters removed from job sites, one ECR shipped directly from the coater's plant, and one ECR removed from a job site plus a corrosion inhibitor. The corrosion inhibitors were calcium nitrite, an aqueous mixture of esters and amines, and a mixture of alcohol and amine. Corrosion protection performance was based on the amount of visually observed corroded surface area. For bare steel tested with and without corrosion inhibitors, corrosion increased with increasing chloride concentration, and specimens saturated with oxygen were more corroded than specimens saturated with breathing air. The amount of corrosion over the 90-day test period was controlled by the amount of oxygen in solution at the higher chloride concentrations. The ester-amine and alcohol-amine did not inhibit corrosion. Calcium nitrite inhibited corrosion at all levels of chloride concentration. For ECR, corrosion occurred both at sites where the coating was damaged and underneath the coating. Coating debondment was greatest in pore water solutions containing chloride. The least coating debondment and corrosion occurred in the solution containing calcium nitrite and the ECR shipped directly from the manufacturer. Coating debondment and corrosion of ECR are directly related to the amount of damage as holes; mashed, dented, and cracked areas; and holidays. The researchers recommend that the developed test method be adopted as a standard test for concrete corrosion inhibitors and that calcium nitrite remain the only concrete corrosion inhibitor approved for use in Virginia.