Geared toward undergraduate and beginning graduate students, this study explores natural numbers, integers, rational numbers, real numbers, and complex numbers. Numerous exercises and appendixes supplement the text. 1973 edition.
Now available in a one-volume paperback, this book traces the development of the most important mathematical concepts, giving special attention to the lives and thoughts of such mathematical innovators as Pythagoras, Newton, Poincare, and Godel. Beginning with a Sumerian short story--ultimately linked to modern digital computers--the author clearly introduces concepts of binary operations; point-set topology; the nature of post-relativity geometries; optimization and decision processes; ergodic theorems; epsilon-delta arithmetization; integral equations; the beautiful "ideals" of Dedekind and Emmy Noether; and the importance of "purifying" mathematics. Organizing her material in a conceptual rather than a chronological manner, she integrates the traditional with the modern, enlivening her discussions with historical and biographical detail.
This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
The first course in analysis which follows elementary calculus is a critical one for students who are seriously interested in mathematics. Traditional advanced calculus was precisely what its name indicates-a course with topics in calculus emphasizing problem solving rather than theory. As a result students were often given a misleading impression of what mathematics is all about; on the other hand the current approach, with its emphasis on theory, gives the student insight in the fundamentals of analysis. In A First Course in Real Analysis we present a theoretical basis of analysis which is suitable for students who have just completed a course in elementary calculus. Since the sixteen chapters contain more than enough analysis for a one year course, the instructor teaching a one or two quarter or a one semester junior level course should easily find those topics which he or she thinks students should have. The first Chapter, on the real number system, serves two purposes. Because most students entering this course have had no experience in devising proofs of theorems, it provides an opportunity to develop facility in theorem proving. Although the elementary processes of numbers are familiar to most students, greater understanding of these processes is acquired by those who work the problems in Chapter 1. As a second purpose, we provide, for those instructors who wish to give a comprehen sive course in analysis, a fairly complete treatment of the real number system including a section on mathematical induction.
Presents 33 essays on such topics as statistics and the design of experiments, group theory, the mathematics of infinity, the mathematical way of thinking, the unreasonableness of mathematics, and mathematics as an art. A reprint of volume 3 of the four-volume edition originally published by Simon and Schuster in 1956. Annotation c. Book News, Inc., Portland, OR (booknews.com).
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
This book presents a comprehensive treatment of basic mathematical logic. The author's aim is to make exact the vague, intuitive notions of natural number, preciseness, and correctness, and to invent a method whereby these notions can be communicated to others and stored in the memory. He adopts a symbolic language in which ideas about natural numbers can be stated precisely and meaningfully, and then investigates the properties and limitations of this language. The treatment of mathematical concepts in the main body of the text is rigorous, but, a section of 'historical remarks' traces the evolution of the ideas presented in each chapter. Sources of the original accounts of these developments are listed in the bibliography.
The Book Is Intended To Serve As A Text In Analysis By The Honours And Post-Graduate Students Of The Various Universities. Professional Or Those Preparing For Competitive Examinations Will Also Find This Book Useful.The Book Discusses The Theory From Its Very Beginning. The Foundations Have Been Laid Very Carefully And The Treatment Is Rigorous And On Modem Lines. It Opens With A Brief Outline Of The Essential Properties Of Rational Numbers And Using Dedekinds Cut, The Properties Of Real Numbers Are Established. This Foundation Supports The Subsequent Chapters: Topological Frame Work Real Sequences And Series, Continuity Differentiation, Functions Of Several Variables, Elementary And Implicit Functions, Riemann And Riemann-Stieltjes Integrals, Lebesgue Integrals, Surface, Double And Triple Integrals Are Discussed In Detail. Uniform Convergence, Power Series, Fourier Series, Improper Integrals Have Been Presented In As Simple And Lucid Manner As Possible And Fairly Large Number Solved Examples To Illustrate Various Types Have Been Introduced.As Per Need, In The Present Set Up, A Chapter On Metric Spaces Discussing Completeness, Compactness And Connectedness Of The Spaces Has Been Added. Finally Two Appendices Discussing Beta-Gamma Functions, And Cantors Theory Of Real Numbers Add Glory To The Contents Of The Book.
Think of a zebra's stripes, the complexities of a spider's web, the uniformity of desert dunes, or the spirals in a sunflower head ... think of a snowflake. The Beauty of Numbers in Nature shows how life on Earth forms the principles of mathematics. Starting with the simplest patterns, each chapter looks at a different kind of patterning system and the mathematics that underlies it. In doing so the book also uncovers some universal patterns, both in nature and man-made, from the basic geometry of ancient Greece to the visually startling fractals that we are familiar with today. Elegantly illustrated, The Beauty of Numbers in Nature is an illuminating and engaging vision of how the apparently cold laws of mathematics find expression in the beauty of nature.
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.