"But you don't have to look that far to appreciate the benefits of space exploration: commercialized NASA technology-known as NASA spinoffs-can be found in your phone, furniture, and car ... NASA is making sure as many of these innovations as possible go beyond their original use to benefit the public"--Page 5
NASA's Office of the Chief Technologist (OCT) has begun to rebuild the advanced space technology program in the agency with plans laid out in 14 draft technology roadmaps. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development and its technology base has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway. Reaching out to involve the external technical community, the National Research Council (NRC) considered the 14 draft technology roadmaps prepared by OCT and ranked the top technical challenges and highest priority technologies that NASA should emphasize in the next 5 years. This report provides specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources.
Many books have covered the rapidly evolving fields of information and communication technology (ICT) and space technology separately. However, no single book has ever focused on how the integration of these two areas is creating a stronger platform for various scientific advancements—including some research work that cannot be performed on Earth. To fill the void, Information, Communication, and Space Technology provides a novel illustration of that connection. Dividing content into sections that cover ICT, existing and future space technologies, and satellites, the author demonstrates the individual and combined power of each of these parts of the overall system. He explores how the combination of concepts from each of these interrelated fields is creating massive potential for broader advances in areas such as robotics, communications, navigation, agriculture, health care, and nanotechnology. The book introduces particular potential innovations, including "rocket-less" spacecraft launches, and development of a global system to balance energy distribution by using satellites that would collect solar energy and transmit it via microwave beams to different locations around the world. Equally useful to students and professionals, this work is a culmination of the domestic and international experience that the author has acquired throughout more than three decades as an instructor and researcher. Emphasizing the strong need to incorporate ICT and space technology into the general university curriculum, the book starts with basic explanations of key concepts and theories, building toward more concrete, application-oriented examples that reveal the importance and impact of new technologies. This includes coverage of how satellites transfer voice, video, and other data across continents, as well as techniques used to obtain very-high-resolution images from space for use in agricultural and environmental sciences.This timely work employs a logical, practically structured approach that will help readers to better understand existing and emerging ICT and space technologies, including the most recent developments and achievements in the field.
As one of the eighteen field-specific reports comprising the comprehensive scope of the strategic general report of the Chinese Academy of Sciences, this sub-report addresses long-range planning for developing science and technology in the field of space science. They each craft a roadmap for their sphere of development to 2050. In their entirety, the general and sub-group reports analyze the evolution and laws governing the development of science and technology, describe the decisive impact of science and technology on the modernization process, predict that the world is on the eve of an impending S&T revolution, and call for China to be fully prepared for this new round of S&T advancement. Based on the detailed study of the demands on S&T innovation in China's modernization, the reports draw a framework for eight basic and strategic systems of socio-economic development with the support of science and technology, work out China's S&T roadmaps for the relevant eight basic and strategic systems in line with China's reality, further detail S&T initiatives of strategic importance to China's modernization, and provide S&T decision-makers with comprehensive consultations for the development of S&T innovation consistent with China's reality. Supported by illustrations and tables of data, the reports provide researchers, government officials and entrepreneurs with guidance concerning research directions, the planning process, and investment. Founded in 1949, the Chinese Academy of Sciences is the nation's highest academic institution in natural sciences. Its major responsibilities are to conduct research in basic and technological sciences, to undertake nationwide integrated surveys on natural resources and ecological environment, to provide the country with scientific data and consultations for government's decision-making, to undertake government-assigned projects with regard to key S&T problems in the process of socio-economic development, to initiate personnel training, and to promote China's high-tech enterprises through its active engagement in these areas.
This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: · Launch systems, structures, power, thermal, communications, propulsion, and software, to · entry, descent and landing, ground segment, robotics, and data systems, to · technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.
Progress in space safety lies in the acceptance of safety design and engineering as an integral part of the design and implementation process for new space systems. Safety must be seen as the principle design driver of utmost importance from the outset of the design process, which is only achieved through a culture change that moves all stakeholders toward front-end loaded safety concepts. This approach entails a common understanding and mastering of basic principles of safety design for space systems at all levels of the program organisation. Fully supported by the International Association for the Advancement of Space Safety (IAASS), written by the leading figures in the industry, with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle and the International Space Station, this book provides a comprehensive reference for aerospace engineers in industry. It addresses each of the key elements that impact on space systems safety, including: the space environment (natural and induced); human physiology in space; human rating factors; emergency capabilities; launch propellants and oxidizer systems; life support systems; battery and fuel cell safety; nuclear power generators (NPG) safety; habitat activities; fire protection; safety-critical software development; collision avoidance systems design; operations and on-orbit maintenance. - The only comprehensive space systems safety reference, its must-have status within space agencies and suppliers, technical and aerospace libraries is practically guaranteed - Written by the leading figures in the industry from NASA, ESA, JAXA, (et cetera), with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle, small and large satellite systems, and the International Space Station - Superb quality information for engineers, programme managers, suppliers and aerospace technologists; fully supported by the IAASS (International Association for the Advancement of Space Safety)
Since the publication of the best-selling first edition of The Satellite Communication Applications Handbook, the satellite communications industry has experienced explosive growth. Satellite radio, direct-to-home satellite television, satellite telephones, and satellite guidance for automobiles are now common and popular consumer products. Similarly, business, government, and defense organizations now rely on satellite communications for day-to-day operations. This second edition covers all the latest advances in satellite technology and applications including direct-to-home broadcasting, digital audio and video, and VSAT networks. Engineers get the latest technical insights into operations, architectures, and systems components.
Advanced Technology for Human Support in Space was written in response to a request from NASA's Office of Life and Microgravity Sciences and Applications (OLMSA) to evaluate its Advanced Human Support Technology Program. This report reviews the four major areas of the program: advanced life support (ALS), environmental monitoring and control (EMC), extravehicular activities (EVA), and space human factors (SHF). The focus of this program is on long-term technology development applicable to future human long-duration space missions, such as for a hypothetical new mission to the Moon or Mars.