Separated and Vortical Flow in Aircraft Wing Aerodynamics

Separated and Vortical Flow in Aircraft Wing Aerodynamics

Author: Ernst Heinrich Hirschel

Publisher: Springer Nature

Published: 2020-10-04

Total Pages: 458

ISBN-13: 366261328X

DOWNLOAD EBOOK

Fluid mechanical aspects of separated and vortical flow in aircraft wing aerodynamics are treated. The focus is on two wing classes: (1) large aspect-ratio wings and (2) small aspect-ratio delta-type wings. Aerodynamic design issues in general are not dealt with. Discrete numerical simulation methods play a progressively larger role in aircraft design and development. Accordingly, in the introduction to the book the different mathematical models are considered, which underlie the aerodynamic computation methods (panel methods, RANS and scale-resolving methods). Special methods are the Euler methods, which as rather inexpensive methods embrace compressibility effects and also permit to describe lifting-wing flow. The concept of the kinematically active and inactive vorticity content of shear layers gives insight into many flow phenomena, but also, with the second break of symmetry---the first one is due to the Kutta condition---an explanation of lifting-wing flow fields. The prerequisite is an extended definition of separation: “flow-off separation” at sharp trailing edges of class (1) wings and at sharp leading edges of class (2) wings. The vorticity-content concept, with a compatibility condition for flow-off separation at sharp edges, permits to understand the properties of the evolving trailing vortex layer and the resulting pair of trailing vortices of class (1) wings. The concept also shows that Euler methods at sharp delta or strake leading edges of class (2) wings can give reliable results. Three main topics are treated: 1) Basic Principles are considered first: boundary-layer flow, vortex theory, the vorticity content of shear layers, Euler solutions for lifting wings, the Kutta condition in reality and the topology of skin-friction and velocity fields. 2) Unit Problems treat isolated flow phenomena of the two wing classes. Capabilities of panel and Euler methods are investigated. One Unit Problem is the flow past the wing of the NASA Common Research Model. Other Unit Problems concern the lee-side vortex system appearing at the Vortex-Flow Experiment 1 and 2 sharp- and blunt-edged delta configurations, at a delta wing with partly round leading edges, and also at the Blunt Delta Wing at hypersonic speed. 3) Selected Flow Problems of the two wing classes. In short sections practical design problems are discussed. The treatment of flow past fuselages, although desirable, was not possible in the frame of this book.


Fluid Mechanics and the Environment: Dynamical Approaches

Fluid Mechanics and the Environment: Dynamical Approaches

Author: John L. Lumley

Publisher: Springer

Published: 2008-01-11

Total Pages: 415

ISBN-13: 3540445129

DOWNLOAD EBOOK

The papers in this volume were written by his students and colleagues to honor Sidney Leibovich, Samuel B. Eckert Professor in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, in commemoration of his 60th birthday, 2 April 1999. They were presented at a symposium held at Cornell, 23 and 24 August 1999. Sid obtained his Bachelor of Science degree with honors from The California Institute of Technology in 1961, graduating first in his class. He came to Cornell to work with Geoffrey Ludford on Magnetohydrodynamics, and obtained his Ph.D. in 1965 in the Department of Theoretical and Applied Mechanics. He spent a year at University College, London as a NATO Postdoctoral Fellow, and returned to Cornell as an Assistant Professor. He has been here ever since, and is currently Director of the Sibley School. Since returning to Cornell, Sid has concentrated on rotating fluids and n- linear waves, in various combinations and applications, producing some 3.2 - pers a year with an applied-mathematical bent. In particular this interest led to both Langmuir circulation and vortex breakdown, two areas in which Sid has had enormous influence, and both, of course, examples of rotating fluids interacting with waves. It was impossible to work in this area without being distracted by the study of the nonlinear dispersive and dissipative waves themselves, and Sid has made substantial contributions in this area.


Flow Modulation and Fluid—Structure Interaction at Airplane Wings

Flow Modulation and Fluid—Structure Interaction at Airplane Wings

Author: Josef Ballmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 396

ISBN-13: 3540448667

DOWNLOAD EBOOK

The research work of the collaborative research center SFB401 Flow Modulation and Fluid-Structure Interaction at Airplane Wings at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, which is reported in this book, was pos sible due to the financial support of the Deutsche Forschungsgemeinschaft (DFG). The proposal has been approved after evaluation by the referees of DFG selected from other universities and industry, which is gratefully acknowledged. The work is still in progress and now approved to continue until the end of year 2005. More than 50 scientists from universities of the United States, Russia, France, Italy, Japan, Great Britain, Sweden, Netherlands, Switzerland, Austria and research orga nizations NASA, ONERA, NLR, DLR could be invited and have visited the research center, gave seminars on their research on related topics and some of them stayed longer for joined work. Besides its scientific value, also the importance of the pro gram for scientific educa tion becomes evident by looking at the numbers of completed theses, which are up to now about 15 doctoral theses, 40 diploma theses and 70 study theses. The authors of this book acknowledge the valuable support coming from all these persons and institutions. They are especially grateful to the referees having reviewed this work, A. Cohen (Universite Pierre et Marie Curie), J. Cooper (Manchester School of Engineering), W. Devenport (Virginia Tech.), M. Drela (MIT), F. Gern (Avionics Specialties Inc.), A. Griewank (TU Dresden), H. Hönlinger (DLR), P.