Nanotechnology in Fuel Cells

Nanotechnology in Fuel Cells

Author: Huaihe Song

Publisher: Elsevier

Published: 2022-02-23

Total Pages: 473

ISBN-13: 0323897916

DOWNLOAD EBOOK

Nanotechnology in Fuel Cells focuses on the use of nanotechnology in macroscopic and nanosized fuel cells to enhance their performance and lifespan. The book covers the fundamental design concepts and promising applications of nanotechnology-enhanced fuel cells and their advantages over traditional fuel cells in portable devices, including longer shelf life and lower cost. In the case of proton-exchange membrane fuel cells (PEMFCs), nano-membranes could provide 100 times higher conductivity of hydrogen ions in low humidity conditions than traditional membranes. For hydrogen fuel cell, nanocatalysts (Pt hybrid nanoparticles) could provide 12 times higher catalytic activity. This is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient macro- and nanosized fuel cells. Outlines how fuel cells can be nanoengineered to enhance their performance and lifespan Covers a variety of fuel cell types, including proton-exchange membrane fuel cells and hydrogen-based fuel cells Assesses the major challenges of nanoengineering fuel cells at an industrial scale


Nanotechnology in Fuel Cells

Nanotechnology in Fuel Cells

Author: Huaihe Song

Publisher: Elsevier

Published: 2022-02-25

Total Pages: 472

ISBN-13: 0323857272

DOWNLOAD EBOOK

Nanotechnology in Fuel Cells focuses on the use of nanotechnology in macroscopic and nanosized fuel cells to enhance their performance and lifespan. The book covers the fundamental design concepts and promising applications of nanotechnology-enhanced fuel cells and their advantages over traditional fuel cells in portable devices, including longer shelf life and lower cost. In the case of proton-exchange membrane fuel cells (PEMFCs), nano-membranes could provide 100 times higher conductivity of hydrogen ions in low humidity conditions than traditional membranes. For hydrogen fuel cell, nanocatalysts (Pt hybrid nanoparticles) could provide 12 times higher catalytic activity. This is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient macro- and nanosized fuel cells. Outlines how fuel cells can be nanoengineered to enhance their performance and lifespan Covers a variety of fuel cell types, including proton-exchange membrane fuel cells and hydrogen-based fuel cells Assesses the major challenges of nanoengineering fuel cells at an industrial scale


Nanomaterials for Fuel Cell Catalysis

Nanomaterials for Fuel Cell Catalysis

Author: Kenneth I. Ozoemena

Publisher: Springer

Published: 2016-07-05

Total Pages: 583

ISBN-13: 3319299301

DOWNLOAD EBOOK

Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art in the design, preparation, and engineering of nanoscale functional materials as effective catalysts for fuel cell chemistry, highlights recent progress in electrocatalysis at both fuel cell anode and cathode, and details perspectives and challenges in future research.


Nanomaterials for Direct Alcohol Fuel Cells

Nanomaterials for Direct Alcohol Fuel Cells

Author: Fatih Sen

Publisher: Elsevier

Published: 2021-08-23

Total Pages: 554

ISBN-13: 0128217138

DOWNLOAD EBOOK

Nanomaterials for Direct Alcohol Fuel Cells explains nanomaterials and nanocomposites as well as the characterization, manufacturing, and design of alcohol fuel cell applications. The advantages of direct alcohol fuel cells (DAFCs) are significant for reliable and long-lasting portable power sources used in devices such as mobile phones and computers. Even though substantial improvements have been made in DAFC systems over the last decade, more effort is needed to commercialize DAFCs by producing durable, low-cost, and smaller-sized devices. Nanomaterials have an important role to play in achieving this aim. The use of nanotechnology in DAFCs is vital due to their role in the synthesis of nanocatalysts within the manufacturing process. Lately, nanocatalysts containing carbon such as graphene, carbon nanotubes, and carbon nanocoils have also attracted much attention. When compared to traditional materials, carbon-based materials have unique advantages, such as high corrosion resistance, better electrical conductivity, and less catalyst poisoning. This book also covers different aspects of nanocomposites fabrication, including their preparation, design, and characterization techniques for their fuel cell applications. This book is an important reference source for materials scientists, engineers, energy scientists, and electrochemists who are seeking to improve their understanding of how nanomaterials are being used to enhance the efficiency and lower the cost of DAFCs. Shows how nanomaterials are being used for the design and manufacture of DAFCs Explores how nanotechnology is being used to enhance the synthesis and catalysis processes to create the next generation of fuel cells Assesses the major challenges of producing nanomaterial-based DAFCs on an industrial scale


Nanostructured and Advanced Materials for Fuel Cells

Nanostructured and Advanced Materials for Fuel Cells

Author: San Ping Jiang

Publisher: CRC Press

Published: 2013-12-07

Total Pages: 584

ISBN-13: 1466512539

DOWNLOAD EBOOK

Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterization, and performance.It


Nanomaterials for Solid State Hydrogen Storage

Nanomaterials for Solid State Hydrogen Storage

Author: Robert A. Varin

Publisher: Springer Science & Business Media

Published: 2009-01-13

Total Pages: 346

ISBN-13: 0387777121

DOWNLOAD EBOOK

Over the past decade, important advances have been made in the development of nanostructured materials for solid state hydrogen storage used to supply hydrogen to fuel cells in a clean, inexpensive, safe and efficient manner. Nanomaterials for Solid State Hydrogen Storage focuses on hydrogen storage materials having high volumetric and gravimetric hydrogen capacities, and thus having the highest potential of being applied in the automotive sector. Written by leading experts in the field, Nanomaterials for Solid State Hydrogen Storage provides a thorough history of hydrides and nanomaterials, followed by a discussion of existing fabrication methods. The authors’ own research results in the behavior of various hydrogen storage materials are also presented. Covering fundamentals, extensive research results and recent advances in nanomaterials for solid state hydrogen storage, this book serves as a comprehensive reference.


Nanomaterials for Direct Alcohol Fuel Cell

Nanomaterials for Direct Alcohol Fuel Cell

Author: Yixuan Wang

Publisher: CRC Press

Published: 2016-12-01

Total Pages: 299

ISBN-13: 9814669016

DOWNLOAD EBOOK

Direct alcohol fuel cells (DAFCs), such as methanol and ethanol ones, are very promising advanced power systems that may considerably reduce dependence on fossil fuels and are, therefore, attracting increased attention worldwide. Nanostructured materials can improve the performance of the cathodes, anodes, and electrolytes of DAFCs. This book focuses on the most recent advances in the science and technology of nanostructured materials for direct alcohol fuel cells, including novel non-noble or low noble metal catalysts deposited on the graphene layer and metal-free doped carbon black for oxygen electroreduction reaction, Sn-based bimetallic and trimetallic nanoparticles for alcohol electro-oxidation reaction, and novel nanomaterials for promoting proton transfer in electrolytes. In addition, the book includes chapters from not only experimentalists but also computational chemists who have worked in the development of advanced power systems for decades. Illustrated throughout with excellent figures, this multidisciplinary work is not just a reference for researchers in chemistry and materials science, but a handy textbook for advanced undergraduate- and graduate-level students in nanoscience- and nanotechnology-related courses, especially those with an interest in developing novel materials for advanced power systems.


Nanomaterials for Direct Alcohol Fuel Cells

Nanomaterials for Direct Alcohol Fuel Cells

Author: Fatih Sen

Publisher: Elsevier

Published: 2021-08-25

Total Pages: 552

ISBN-13: 0128217146

DOWNLOAD EBOOK

Nanomaterials for Direct Alcohol Fuel Cells explains nanomaterials and nanocomposites as well as the characterization, manufacturing, and design of alcohol fuel cell applications. The advantages of direct alcohol fuel cells (DAFCs) are significant for reliable and long-lasting portable power sources used in devices such as mobile phones and computers. Even though substantial improvements have been made in DAFC systems over the last decade, more effort is needed to commercialize DAFCs by producing durable, low-cost, and smaller-sized devices. Nanomaterials have an important role to play in achieving this aim. The use of nanotechnology in DAFCs is vital due to their role in the synthesis of nanocatalysts within the manufacturing process. Lately, nanocatalysts containing carbon such as graphene, carbon nanotubes, and carbon nanocoils have also attracted much attention. When compared to traditional materials, carbon-based materials have unique advantages, such as high corrosion resistance, better electrical conductivity, and less catalyst poisoning. This book also covers different aspects of nanocomposites fabrication, including their preparation, design, and characterization techniques for their fuel cell applications. This book is an important reference source for materials scientists, engineers, energy scientists, and electrochemists who are seeking to improve their understanding of how nanomaterials are being used to enhance the efficiency and lower the cost of DAFCs. Shows how nanomaterials are being used for the design and manufacture of DAFCs Explores how nanotechnology is being used to enhance the synthesis and catalysis processes to create the next generation of fuel cells Assesses the major challenges of producing nanomaterial-based DAFCs on an industrial scale


Micro & Nano-Engineering of Fuel Cells

Micro & Nano-Engineering of Fuel Cells

Author: Dennis Y.C. Leung

Publisher: CRC Press

Published: 2015-04-24

Total Pages: 337

ISBN-13: 1315815079

DOWNLOAD EBOOK

Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort


Nanomaterials for Alcohol Fuel Cells

Nanomaterials for Alcohol Fuel Cells

Author: Inamuddin

Publisher: Materials Research Forum LLC

Published: 2019-05-25

Total Pages: 398

ISBN-13: 1644900181

DOWNLOAD EBOOK

Alcohol fuel cells are very attractive as power sources for mobile and portable applications. As they convert the chemical energy of fuels into electricity, much recent research is directed at developing suitable and efficient catalysts for the process. The present book focuses on pertinent types of nanomaterial-based catalysts, membranes and supports.