The ability to arrange precisely designed patterns of nanoparticles into a desired spatial configuration is the key to creating novel nanoscale devices that take advantage of the unique properties of nanomaterials. While two-dimensional arrays of nanoparticles have been demonstrated successfully by various techniques, a controlled way of building ordered arrays of three-dimensional (3D) nanoparticle structures remains challenging. This book describes a new technique called the 'nanoscopic lens' which is able to produce a variety of 3D nano-structures in a controlled manner. This ebook describes the nanoscopic lens technique and how it can serve as the foundation for device development that is not limited to a variety of optical, magnetic and electronic devices, but can also create a wide range of bio-nanoelectronic devices.
Parkinson's disease is a neurological disorder with cardinal motor signs of resting tremor, bradykinesia and lead-pipe rigidity. In addition, many patients display non-motor symptoms, including a diminished sensation of smell, gastrointestinal problems, various disorders of sleep and some cognitive impairment. These clinical features - particularly the motor signs - manifest after a progressive death of many dopaminergic neurones in the brain. Although currently available, conventional therapies can reduce the signs of the disease, the progression of this neuronal death has proved difficult to slow or stop, and the condition is relentlessly progressive. Hence, there is a real need to develop a treatment that is neuroprotective, one that slows the pathology of the disease effectively. At present, there are several neuroprotective therapies in the experimental pipeline, but these are for the patients of tomorrow. This book focuses on two therapies that are readily available for the patients of today. They involve the use of exercise and light (i.e. photobiomodulation, the use of red to infrared light therapy (λ=600-1070nm) on body tissues). The two therapies are tied together in several ways. First, in animal models of Parkinson's disease, they each have been shown to offer the key feature of neuroprotection, stimulating a series of built-in protective mechanisms within the neurones, that helps their survival, to self-protect and/or self-repair. There are also some promising indications of neuroprotection and many beneficial outcomes in parkinsonian patients. Further, both exercise and light therapies are similar in that they are non-invasive and safe to use, with no known adverse side-effects, making their combination with the conventional therapies, such as dopamine replacement drug therapy and deep brain stimulation, all the more feasible. Given the heterogeneity of Parkinson's disease in humans, tackling the condition from a range of different angles - with a number of different therapies - would only serve to enhance the positive outcomes. This book considers the use of exercise and light therapies, proposing that they have the potential to make a powerful "dynamic duo", offering a most effective neuroprotective treatment option to patients.
This book provides a general introduction to nanogels, and designs of various stimuli-sensitive nanogels that are able to control drug release in response to specific stimuli. Nanogels are three-dimensional nanosized networks that formed by physically or chemically crosslinking polymers. They have highly interesting properties such as biocompatibility, high stability, particle size adjustment, drug loading capability and modification of the surface for active targeting. They can respond to stimuli which results in the controlled release of drug and targeting of the site.
In this book, cancer theranostics applications of magnetic iron oxide nanoparticles are overviewed in details. Moreover, their synthesis, characterization, multifunctionality, disease targeting, biodistribution, pharmacokinetics and toxicity have been briefly highlighted. Finally, we have mentioned the current examples of clinical trials of magnetic nanoparticles in cancer theranostics along with their future scopes and challenges.
Advancement in the field of nanotechnology has revolutionized the field of medicines and pharmaceuticals in the twentieth century. The proper use of nanomaterials in medical applications requires a proper understanding of these compounds. This correct understanding, beyond the physical and chemical properties, must also have the correct logic of use. In other words, the strategic use of nanomaterials with applicable perspective can also help to advance research, but if we go forward with the current research perspective that leads to the expansion of inapplicable researches, the intrinsic importance of using these nanomaterials is eliminated. This book, considering the importance of nanomaterials and their application in medicine, as well as the significant growth of biomaterials in research fields, introduces the variables law (Rabiee's theory) for the implementation of this research and the establishment of a proper strategy. Considering that the degree of number of biomaterial and host variables follow a variety factors, and by increasing the degree of number of biomaterials and host variables, the degree of total variables also increases and as a result, performance and, consequently, biomaterial behavior in the host environment will have less control and predictive capabilities. For an external substance that is supposed to be in the human body, it must be predictable and controllable, In addition, according to the principle that the host in a fixed person does not have the ability to change, therefore, by using the simpler biomaterials (with less variables), the above goal is more accessible. It should be noted that in addition to observing biocompatibility tests for a biomaterial based on existing protocols and standards, the Applicable Compatibility (AC) parameter is also required in accordance with Rabiee's theory. This book is written in accordance with Rabiee's theory and the contents of this book should be evaluated from this perspective.
The ability to arrange precisely designed patterns of nanoparticles into a desired spatial configuration is the key to creating novel nanoscale devices that take advantage of the unique properties of nanomaterials. While two-dimensional arrays of nanoparticles have been demonstrated successfully by various techniques, a controlled way of building ordered arrays of three-dimensional (3D) nanoparticle structures remains challenging. This book describes a new technique called the 'nanoscopic lens' which is able to produce a variety of 3D nano-structures in a controlled manner. This ebook describes the nanoscopic lens technique and how it can serve as the foundation for device development that is not limited to a variety of optical, magnetic and electronic devices, but can also create a wide range of bio-nanoelectronic devices.
This book outlines the electro-activity in the human body, human behavior, and other bio-information during image viewing and applies it to a hygienic and clinical setting. The book begins by explaining the basic science of brain measurements and the endocrine system, before analyzing the bio-signals obtained from electrocardiogram (ECG), electrogastrography (EGG), electro-oculography (EOG) and much more. As the book subsequently demonstrates, these bio-signals can be measured using wearable devices, and the data can be used to detect undiagnosed diseases and health-relevant abnormalities. Especially in the field of nursing care for the elderly and rehabilitation, these new options for the management and analysis of biological information hold considerable potential. Bio-information for Hygiene offers a valuable resource for both new and established researchers, as well as students who are seeking comprehensive information on environmental/occupational health and health promotion. It will also assist technical staff whose work involves bio-informatics.
Janus, the ancient Roman god depicted with two faces is an appropriate metaphor for light therapy. In the right photodynamic therapy conditions, light is able to kill nearly anything that is living such as cancers, microorganisms, parasites, and more. On the opposite face, light of the correct wavelength and proper dose (photobiomodulation) can heal, regenerate, protect, revitalize and restore any kind of dead, damaged, stressed, dying, degenerating cells, tissue, or organ system. This book discusses both sides of Janus' face in regards to light therapy.
Photodynamic therapy (PDT) was discovered over one hundred years ago after observing the death of microorganisms upon exposure to dyes and light. It is the combination of non-toxic dyes and harmless visible light that, in the presence of oxygen, produce highly toxic reactive species. The principal medical application during the last century was in cancer therapy but, in these days of rising antibiotic resistance, PDT shows increasing promise as an alternative approach to treating infections. PDT has also been used in blood product sterilization, peridontology, acne reduction, and the treatment of viral lesions such as those caused by human papilloma virus. It may also have potential as an environmentally friendly pesticide. This is the first and only book to comprehensively cover the use of light and photosensitising agents for controlling microbial pathogens. It provides a comprehensive and up-to-date coverage of an emerging field. There are several chapters on the design of antimicrobial photosensitizers, their use to kill pathogenic organisms and their success in treating infections in animal models. It has long been known that gram-positive bacteria are highly susceptible to photoinactivation but the book also discusses means of widening the range of microorganisms that can be tackled by PDT. Edited by two pioneers in the application of PDT to medical and environmental issues, this book covers the basic science, translational research in animals, and the clinical applications in various medical specialities. It represents an indispensable resource for microbiologists and infectious disease doctors as well as dentists, dermatologists, gastroenterologists and transfusion specialists.
This book focuses on skin photoaging, the premature aging of skin due to environmental effects such as exposure to UV (UVA, UVB) radiation from the sun. Slowing the aging process and rejuvenation have been one of the major goals of medicine and are in high