This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active players, are compiled to make the book a reference book. Readers will find the book useful and of benefit both as summaries for works in this field and as tutorials and explanations of concepts for those just entering the field. Additionally, the book helps to stimulate future developments.
This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active players, are compiled to make the book a reference book. Readers will find the book useful and of benefit both as summaries for works in this field and as tutorials and explanations of concepts for those just entering the field. Additionally, the book helps to stimulate future developments.
'The overall book content is excellently coordinated to form a synchronised story, interesting to a broad scientific audience … The book summarises the present knowledge in the field, introduces fundamental concepts to the beginners, describes key measuring methods and presents several different typical demonstrative systems, some of them exhibiting an extraordinary rich spectrum of structures and superstructures. I am sure that with time the book will become an attractor to a broad audience (physicists, chemists, material scientists, engineers, etc.), ranging from students, beginners in the field to experienced researchers. To summarise, this is the book that I have been missing on my bookshelf.'Liquid Crystals TodayWhile liquid crystals are today widely known for their successful application in flat panel displays (LCDs), academic liquid crystal research is more and more targeting situations where these anisotropic fluids are put to completely different use, in varying contexts. A particularly strong focus is on colloidal liquid crystals, where particles, bubbles or drops are dispersed in a liquid crystal phase. The liquid crystal can act as a host phase, with the inclusions constituting foreign guests that disturb the local order in interesting ways, often resulting in large-scale positional arrangement and/or uniform alignment of the guests. But it may also be formed by solid particles themselves, if these are of nanoscale dimensions and of disc- or rod-shape, and if they are suspended in an isotropic liquid host at sufficient concentration.This book aims to cover both the modern research tracks, gathering pioneering researchers of the different subfields to give a concise overview of the basis as well as the prospects of their respective specialties. The scope spans from curiosity-driven fundamental scientific research to applied sciences. Over the course of the next decade, the former is likely to generate new tracks of the latter type, considering the exploratory and productive phase of this young research field.
Practically every display technology in use today relies on the flat, energy-efficient construction made possible by liquid crystals. These displays provide visually-crisp, vibrantly-colored images that a short time ago were thought only possible in science fiction. Liquid crystals are known mainly for their use in display technologies, but they also provide many diverse and useful applications: adaptive optics, electro-optical devices, films, lasers, photovoltaics, privacy windows, skin cleansers and soaps, and thermometers. The striking images of liquid crystals changing color under polarized lighting conditions are even on display in many museums and art galleries--true examples of 'science meeting art'. Although liquid crystals provide us with visually stunning displays, fascinating applications, and are a rich and fruitful source of interdisciplinary research, their full potential may yet remain untapped.
Over the past ten years liquid crystals have attracted much interest and considerable progress has been made with respect to our knowledge in this field. The recent development was initiated mainly by the work of J. L. Fergason and G. H. Heilmeier, who pointed out the importance of liquid crystals for thermographic and electro optic applications. The first part of this book is a brief introduction to the physics of liquid crystals. The structures and properties of the three basic types of liquid crystals are discussed. A special paragraph is devoted to electric-field effects, which are important in display applications. The chapter on Scientific Applications gives an insight into the potential applications of liquid crystals in fundamental research, with special emphasis on explaining the principles involved. Two groups of potential applications are discussed in detail: 1. the use of liquid crystals as anisotropic solvent for the determination of molecular properties by means of spectroscopy, and 2. their use in analytical chemistry, particularly in gas chromatography. The reverse process involves the use of the dissolved molecules as microscopic probes in the investigation of the dynamical molecular structure of anisotropic fluid systems (e.g. biological membranes). This extremely important technique is also described.
Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.
In this book we have collected a series of state-of-the art papers written by specialists in the field of ionic liquid crystals (ILCs) to address key questions concerning the synthesis, properties, and applications of ILCs. New compounds exhibiting ionic liquid crystalline phases are presented, both of calamitic as well as discotic type. Their dynamic and structural properties have been investigated with a series of experimental techniques including differential scanning calorimetry, polarized optical spectroscopy, X-ray scattering, and nuclear magnetic resonance, impedance spectroscopy to mention but a few. Moreover, computer simulations using both fully atomistic and highly coarse-grained force fields have been presented, offering an invaluable microscopic view of the structure and dynamics of these fascinating materials.
This is a monograph/text devoted to a detailed treatment of the optical, electro-optical and nonlinear optical properties of all the mesophases of liquid crystals and related processes, phenomena and application principles. Quantitative data on material and optical parameters spanning the ultraviolet, visible, infrared as well as the microwave regimes are presented along with detailed theoretical treatments of basic liquid crystal physics, material properties and nonlinear optics.Starting with a discussion on the basic building blocks of liquid crystalline molecules, the authors proceed to present in a pedagogical manner current theories, experiments, and applications of these unique and important optical properties of liquid crystals. Numerous tables of hard-to-find liquid crystalline parameters, a self-contained chapter on general nonlinear optics, and comprehensive literature review are also included.