Nanoparticles have a physical dimension comparable to the size of molecular structures on the cell surface. Therefore, nanoparticles, compared to larger (e.g., micrometer) particles, are considered to behave differently when they interact with cells. Nanoparticles in the Lung: Environmental Exposure and Drug Delivery provides a better understanding
Nanoparticles have a physical dimension comparable to the size of molecular structures on the cell surface. Therefore, nanoparticles, compared to larger (e.g., micrometer) particles, are considered to behave differently when they interact with cells. Nanoparticles in the Lung: Environmental Exposure and Drug Delivery provides a better understanding of how inhaled nanoparticles behave in the human lungs and body. Featuring contributions from renowned subject-matter experts, this authoritative text describes the sequence of events that nanoparticles encounter in the lungs when moving from the air into the bloodstream. This includes deposition, interactions with the alveolar surface and epithelium, translocation across the air-blood tissue barrier, and accumulation in the body. In addition, the book addresses practical considerations for drug delivery to the respiratory tract, drug and gene delivery in the lungs, and bio-nanocapsules. It considers the physicochemical, colloidal, and transport properties of nanoparticles, and presents cutting-edge research on special issues such as dosimetry for in vitro nanotoxicology, nanoparticle deposition in the developing lungs, and the potential for nose-to-brain delivery of drugs. Nanoparticles in the Lung: Environmental Exposure and Drug Delivery offers the most updated and comprehensive knowledge of the risks and benefits associated with nanoparticle inhalation--to protect humans from any harmful effects and to explore the utility of nanoparticles as drug delivery carriers.
Nanotechnology-based Targeted Drug Delivery Systems for Lung Cancer is an indispensable resource that will help pharmaceutical scientists and clinical researchers design and develop novel drug delivery systems and devices for the treatment of lung cancer. As recent breakthroughs in nanomedicine are now making it possible to deliver drugs, genes and therapeutic agents to localized areas of disease to maximize clinical benefit, while also limiting unwanted side effects, this book explores promising approaches for the diagnosis and treatment of lung cancer using cutting-edge nanomedical technologies. Topics discussed include polymeric nanoparticles, solid lipid nanoparticles, liposomes, dendrimers, micelles and nanoemulsions. - Provides an overview of an array of nanotechnology-based drug delivery systems - Examines the design, synthesis and application of different nanocarriers in drug and gene delivery - Provides an in-depth understanding of the design of targeted nanotherapeutics and technologies and its implication in various site-specific cancers
This book focuses on the aerosol treatment of lung diseases, recent improvements in the understanding of proper dosage, and major innovations in device technology applied to clinical practice. Examines the behavior of inspired spherical particles in the respiratory tract!Featuring over 1300 references, drawings, tables, and photographs.
Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems explores the development of novel therapeutics and diagnostics to improve pulmonary disease management, looking down to the nanoscale level for an efficient system of targeting and managing respiratory disease. The book examines numerous nanoparticle-based drug systems such as nanocrystals, dendrimers, polymeric micelles, protein-based, carbon nanotube, and liposomes that can offer advantages over traditional drug delivery systems. Starting with a brief introduction on different types of nanoparticles in respiratory disease conditions, the book then focuses on current trends in disease pathology that use different in vitro and in vivo models. The comprehensive resource is designed for those new to the field and to specialized scientists and researchers involved in pulmonary research and drug development. - Explores recent perspectives and challenges regarding the management and diagnosis of chronic respiratory diseases - Provides insights into how advanced drug delivery systems can be effectively formulated and delivered for the management of various pulmonary diseases - Includes the most recent information on diagnostic methods and treatment strategies using controlled drug delivery systems (including nanotechnology)
The pace of new research and level of innovation repeatedly introduced into the field of drug delivery to the lung is surprising given its state of maturity since the introduction of the pressurized metered dose inhaler over a half a century ago. It is clear that our understanding of pulmonary drug delivery has now evolved to the point that inhalation aerosols can be controlled both spatially and temporally to optimize their biological effects. These abilities include controlling lung deposition, by adopting formulation strategies or device technologies, and controlling drug uptake and release through sophisticated particle technologies. The large number of contributions to the scientific literature and variety of excellent texts published in recent years is evidence for the continued interest in pulmonary drug delivery research. This reference text endeavors to bring together the fundamental theory and practice of controlled drug delivery to the airways that is unavailable elsewhere. Collating and synthesizing the material in this rapidly evolving field presented a challenge and ultimately a sense of achievement that is hopefully reflected in the content of the volume.
Handbook of Lung Targeted Drug Delivery Systems: Recent Trends and Clinical Evidences covers every aspect of the drug delivery to lungs, the physiology and pharmacology of the lung, modelling for lung delivery, drug devices focused on lung treatment, regulatory requirements, and recent trends in clinical applications. With the advent of nano sciences and significant development in the nano particulate drug delivery systems there has been a renewed interest in the lung as an absorption surface for various drugs. The emergence of the COVID-19 virus has brought lung and lung delivery systems into focus, this book covers new developments and research used to address the prevention and treatment of respiratory diseases. Written by well-known scientists with years of experience in the field this timely handbook is an excellent reference book for the scientists and industry professionals. Key Features: Focuses particularly on the chemistry, clinical pharmacology, and biological developments in this field of research. Presents comprehensive information on emerging nanotechnology applications in diagnosing and treating pulmonary diseases Explores drug devices focused on lung treatment, regulatory requirements, and recent trends in clinical applications Examines specific formulations targeted to pulmonary systems
The most comprehensive reference on fluorescent nanodiamond physical and chemical properties and contemporary applications Fluorescent nanodiamonds (FNDs) have drawn a great deal of attention over the past several years, and their applications and development potential are proving to be manifold and vast. The first and only book of its kind, Fluorescent Nanodiamonds is a comprehensive guide to the basic science and technical information needed to fully understand the fundamentals of FNDs and their potential applications across an array of domains. In demonstrating the importance of FNDs in biological applications, the authors bring together all relevant chemistry, physics, materials science and biology. Nanodiamonds are produced by powerful cataclysmic events such as explosions, volcanic eruptions and meteorite impacts. They also can be created in the lab by high-pressure high-temperature treatment of graphite or detonating an explosive in a reactor vessel. A single imperfection can give a nanodiamond a specific, isolated color center which allows it to function as a single, trapped atom. Much smaller than the thickness of a human hair, a nanodiamond can have a huge surface area that allows it to bond with a variety of other materials. Because of their non-toxicity, nanodiamonds may be useful in biomedical applications, such as drug delivery and gene therapy. The most comprehensive reference on a topic of rapidly increasing interest among academic and industrial researchers across an array of fields Includes numerous case studies and practical examples from many areas of research and industrial applications, as well as fascinating and instructive historical perspectives Each chapter addresses, in-depth, a single integral topic including the fundamental properties, synthesis, mechanisms and functionalisation of FNDs The first book published by the key patent holder with his research group in the field of FNDs Fluorescent Nanodiamonds is an important working resource for a broad range of scientists and engineers in industry and academia. It will also be a welcome reference for instructors in chemistry, physics, materials science, biology and related fields.
Nano Drug Delivery Strategies for the Treatment of Cancers discusses several current and promising approaches for the diagnosis and treatment of cancer by using the most recent developments in nanomedical technologies. The book presents introductory information about the biology of different types of cancer in order to provide the reader with knowledge on their specificities. In addition, it discusses various novel drug delivery systems, detailing their functionalities, expected outcomes and future developments in the field, focusing on brain, mouth and throat, breast, lung, liver, pancreas, stomach, colon, bool, skin and prostate cancers. The book is a valuable source for cancer researchers, oncologists, pharmacologists and nanotechnologists who are interested in novel drug delivery systems and devices for treatment of various types of cancer that take advantage of recent advances in this exciting field. - Discusses a wide range of promising approaches for the diagnosis and treatment of cancer using the latest advancement in cutting-edge nanomedical technologies - Provides foundational information on different types of cancer and their biology to help the reader choose the best nano drug delivery system for patients - Presents novel drug delivery systems based on nanoparticles, microparticles, liposomes, self-assembling Micelles and block copolymer micelles
A comprehensive guide to the current research, major challenges, and future prospects of controlled drug delivery systems Controlled drug delivery has the potential to significantly improve therapeutic outcomes, increase clinical benefits, and enhance the safety of drugs in a wide range of diseases and health conditions. Fundamentals of Drug Delivery provides comprehensive and up-to-date coverage of the essential principles and processes of modern controlled drug delivery systems. Featuring contributions by respected researchers, clinicians, and pharmaceutical industry professionals, this edited volume reviews the latest research in the field and addresses the many issues central to the development of effective, controlled drug delivery. Divided in three parts, the book begins by introducing the concept of drug delivery and discussing both challenges and opportunities within the rapidly evolving field. The second section presents an in-depth critique of the common administration routes for controlled drug delivery, including delivery through skin, the lungs, and via ocular, nasal, and otic routes. The concluding section summarizes the current state of the field and examines specific issues in drug delivery and advanced delivery technologies, such as the use of nanotechnology in dermal drug delivery and advanced drug delivery systems for biologics. This authoritative resource: Covers each main stage of the drug development process, including selecting pharmaceutical candidates and evaluating their physicochemical characteristics Describes the role and application of mathematical modelling and the influence of drug transporters in pharmacokinetics and drug disposition Details the physiology and barriers to drug delivery for each administration route Presents a historical perspective and a look into the possible future of advanced drug delivery systems Explores nanotechnology and cell-mediated drug delivery, including applications for targeted delivery and toxicological and safety issues Includes comprehensive references and links to the primary literature Edited by a team of of internationally-recognized experts, Fundamentals of Drug Delivery is essential reading for researchers, industrial scientists, and advanced students in all areas of drug delivery including pharmaceutics, pharmaceutical sciences, biomedical engineering, polymer and materials science, and chemical and biochemical engineering.