Nanofluidics for Single Molecule DNA Sequencing

Nanofluidics for Single Molecule DNA Sequencing

Author: Padmini Krishnakumar

Publisher:

Published: 2013

Total Pages: 131

ISBN-13:

DOWNLOAD EBOOK

After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection. Chapter 2 presents discusses carbon nanotube(CNT) based nanofluidics. The fabrication and DNA sensing measurements of CNT forest membrane devices are presented. Chapter 3 gives the background for functionalization and recognition aspects of reader molecules. Chapter 4 marks the transition to solid state nanopore nanofluidics. The fabrication of Imidazole functionalized nanopores is discussed. The Single Molecule detection results of DNA from Palladium nanopore devices are presented next. Combining chemical recognition to nanopore technology, it has been possible to prolong the duration of single molecule events from the order of a few micro seconds to upto a few milliseconds. Overall, the work presented in this thesis promises longer single molecule detection time in a nanofludic set up and paves way for novel nanopore- tunnel junction devices that combine recognition chemistry, tunneling device and nanopore approach.


Nanofluidic Pathways for Single Molecule Translocation and Sequencing

Nanofluidic Pathways for Single Molecule Translocation and Sequencing

Author: Weisi Song

Publisher:

Published: 2015

Total Pages: 148

ISBN-13:

DOWNLOAD EBOOK

Driven by the curiosity for the secret of life, the effort on sequencing of DNAs and other large biopolymers has never been respited. Advanced from recent sequencing techniques, nanotube and nanopore based sequencing has been attracting much attention. This thesis focuses on the study of first and crucial compartment of the third generation sequencing technique, the capture and translocation of biopolymers, and discuss the advantages and obstacles of two different nanofluidic pathways, nanotubes and nanopores for single molecule capturing and translocation. Carbon nanotubes with its constrained structure, the frictionless inner wall and strong electroosmotic flow, are promising materials for linearly threading DNA and other biopolymers for sequencing. Solid state nanopore on the other hand, is a robust chemical, thermal and mechanical stable nanofluidic device, which has a high capturing rate and, to some extent, good controllable threading ability for DNA and other biomolecules. These two different but similar nanofluidic pathways both provide a good preparation of analyte molecules for the sequencing purpose. In addition, more and more research interests have move onto peptide chains and protein sensing. For proteome is better and more direct indicators for human health, peptide chains and protein sensing have a much wider range of applications on bio-medicine, disease early diagnoses, and etc. A universal peptide chain nanopore sensing technique with universal chemical modification of peptides is discussed in this thesis as well, which unifies the nanopore capturing process for vast varieties of peptides. Obstacles of these nanofluidic pathways are also discussed. In the end of this thesis, a proposal of integration of solid state nanopore and fixed-gap recognition tunneling sequencing technique for a more accurate DNA and peptide readout is discussed, together with some early study work, which gives a new direction for nanopore based sequencing.


Combined Nanochannel-nanopore Device for Single- Molecule DNA Analysis and Manipulation

Combined Nanochannel-nanopore Device for Single- Molecule DNA Analysis and Manipulation

Author: Yuning Zhang

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

"Nanofluidic devices, containing features with dimensions of 1-100 nm, allow for the direct detection, analysis and manipulation of single molecule analytes. In particular, over the past ten years, there has been increasing interest in developing nanofluidic devices capable of analyzing DNA at the single-molecule level, with the goal of developing high throughput mapping and eventually sequencing technology. Part of this thesis will be focusing on single-molecular DNA detection using solid state nanopores. The nanopore fabrication technique via electron beam ablation will be presented. Noise reduction is affected by coating a layer of PDMS(polydimethylsiloxane) on the nanopore supporting chip. Different folding states of DNA molecules translocating through the nanopore are observed. Since the classic nanopore setup has low signal to noise ratio, we have successfully fabricated a novel micro/nanoiudic device combining nanopore detectors with nanochannels devices by embedding a nanopore inside the nanochannel. The device concept, device fabrication, theoretical analysis and preliminary results will be covered in this thesis." --


Nanofluidics

Nanofluidics

Author: Joshua Benno Edel

Publisher: Royal Society of Chemistry

Published: 2009

Total Pages: 212

ISBN-13: 0854041478

DOWNLOAD EBOOK

In his celebrated lecture at the APS meeting in 1959, Richard Feynman pondered the potential of miniaturization in the physical sciences and proposed a variety of new nano-tools. Since then, many of these predictions have become reality including the development and application of nanofluidics. This timely book fills a gap in the current reference literature in this exciting and growing field and is dedicated to the field of nanofluidics with a focus on bioanalytical applications. These nanoscale analytical instruments employ micromachined features and are able to manipulate fluid samples with high precision and efficiency. The book is written at a level accessible to experts and non-experts alike and is essential reading for all advanced nanobiotechnology courses within academic institutions.


Extended-nanofluidic Systems for Chemistry and Biotechnology

Extended-nanofluidic Systems for Chemistry and Biotechnology

Author: Kazuma Mawatari

Publisher: World Scientific

Published: 2012

Total Pages: 187

ISBN-13: 1848168012

DOWNLOAD EBOOK

For the past decade, new research fields utilizing microfluidics have been formed. General micro-integration methods were proposed, and the supporting fundamental technologies were widely developed. These methodologies have made various applications in the fields of analytical and chemical synthesis, and their superior performances such as rapid, simple, and high efficient processing have been proved. Recently, the space is further downscaling to 101 103nm scale (we call the space extended-nano space). The extended-nano space located between the conventional nanotechnology (100 101nm) and microtechnology (>1 m), and the research tools are not well established. In addition, the extended-nano space is a transient space from single molecules to bulk condensed phase, and fluidics and chemistry are not unknown. For these purposes, basic methodologies were developed, and new specific phenomena in fluidics and chemistry were found. These new phenomena were applied to unique chemical operations such as concentration and ion selection. The new research fields which are now being created are quite different from those in microspace. Unique devices are also increasingly being reported. In this book, we describe the fundamental technologies for extended-nano space and show the unique liquid properties found in this space and applications for single molecule or cell analysis. The research area is very new and hence, exciting. In contrast to other specialized areas, the research fields require wide knowledge (chemistry, fluidics, mechanics, photonics, biology etc.) and state-of-the-art technologies (bottom-up and top-down fabrication for various hard and soft materials, precise fluidic control, single molecule detection methods, and particle surface modification methods etc.), which have not been not covered by conventional review papers or books. Therefore, researchers or students new to the field need a new book covering these fields including recent research topics, applications and problems to be solved in the future. Our motivation is to summarize the state-of-the-art technologies for research and demonstrate new chemistry and fluidics in extended-nano space for students and researchers in academia or industry. We also emphasize the potential large impact microfluidic technologies have on chemistry and biochemistry.


Encyclopedia of Microfluidics and Nanofluidics

Encyclopedia of Microfluidics and Nanofluidics

Author: Dongqing Li

Publisher: Springer Science & Business Media

Published: 2008-08-06

Total Pages: 2242

ISBN-13: 0387324682

DOWNLOAD EBOOK

Covering all aspects of transport phenomena on the nano- and micro-scale, this encyclopedia features over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas. Coverage includes electrical double-layers, optofluidics, DNC lab-on-a-chip, nanosensors, and more.


Nanofluidics (Second Edition)

Nanofluidics (Second Edition)

Author: Joshua Edel

Publisher: Royal Society of Chemistry

Published: 2016-11-18

Total Pages: 326

ISBN-13: 1849734046

DOWNLOAD EBOOK

The Nanoscience and Nanotechnology Series provides a comprehensive resource of books covering key topics such as the synthesis, characterisation, performance and properties of nanostructured materials and technologies and their applications.