Nanocellulose Based Composites for Electronics presents recent developments in the synthesis and applications of nanocellulose composites in electronics, highlighting applications in various technologies. Chapters covers new trends and challenges in a wide range of electronic applications and devices. Significant properties, safety, sustainability, and environmental impacts of the electronic devices are included, along with the challenges of using nanocellulose-based composites in electronics. This book is an important reference for materials scientists and engineers configuring and designing processes for the synthesis and device fabrication of nanocellulose composites in electronics. - Explores how to utilize nanocellulose fibers and nano-crystalline cellulose substances to synthesize materials with designed functionalities - Outlines the major production processes for nanocellulous composites - Discusses the major challenges that need to be surmounted in order to effectively use nanocellulous composites for electronics
Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications presents recent developments in, and applications of, nanocellulose as reinforcement in composite and nanocomposite materials. Written by leading experts, the book covers properties and applications of nanocellulose, including the production of nanocellulose from different biomass resources, the usefulness of nanocellulose as a reinforcement for polymer and paper, and major challenges for successful scale-up production in the future. The chapters draw on cutting-edge research on the use of nanosized cellulose reinforcements in polymer composites that result in advanced material characteristics and significant enhancements in physical, mechanical and thermal properties. The book presents an up-to-date review of the major innovations in the field of nanocellulose and provides a reference material for future research in biomass based composite materials, which is timely due to the sustainable, recyclable and eco-friendly demand for highly innovative materials made from biomass. This book is an ideal source of information for scientific and industrial researchers working in materials science. - Gathers together a broad spectrum of research on nanocellulose, with emphasis on the outstanding reinforcing potential when nanocellulose is included into a polymer matrix or as an additive to paper - Demonstrates systematic approaches and investigations from processing, design, characterization and applications of nanocellulose - Presents a useful reference and technical guide for nanocomposite materials R&D sectors, university academics and postgraduate students (Masters and PhD) and industrialists working in material commercialization
Biological materials and their applications have drawn increasing attention among scientists. Cellulose is an abundant, renewable, biodegradable, economical, thermally stable, and light material, and it has found application in pharmaceuticals, coatings, food, textiles, laminates, sensors, actuators, flexible electronics, and flexible displays. Its nano form has extraordinary surface properties, such as higher surface area than cellulose; hence, nanocellulose can be used as a substitute for cellulose. Among many other sustainable, functional nanomaterials, nanocellulose is attracting growing interest in environmental remediation technologies because of its many unique properties and functionalities. Nanocellulose and Its Composites for Water Treatment Applications supplies insight into the application of nanocellulose and its nanocomposites for water purification and remediation. It covers different classes of nanocellulose—cellulose nanocrystal (CNC), microfibrillated cellulose (MFC), hairy cellulose nanocrystalloid (HCNC), and bacterial nanocellulose (BNC)—for their competency with other renewable and carbonaceous materials such as pectin, alginate, and CNTs. Future perspectives of nanocellulose and nanocomposites gleaned from different biodegradable origins are also discussed. This book delves into an updated description of the basic principles and developments in synthesis, characterization methods, properties (chemical, thermal, optical, structural, surface, and mechanical structure), property relationships, crystallization behavior, and degradability of biodegradable nanocomposites. The book also supplies vivid information about various cellulose nanomaterials and their applications in absorbing organic and inorganic toxins, membrane filtration of bacteria, viruses, and ionic impurities, photocatalytic dye removal, and sensing of water toxins. Features Details the synthesis and characterization methods of nanocellulose Illustrates the applications of nanocellulose and its nanocomposites Shows in-depth accounts of the various types of properties of nanocellulose and its composites Features emerging trends in the use of nanocellulose as adsorbents, sensors, membranes, and photocatalysis materials This book will be useful for academics, researchers, and engineers working in water treatment and purification.
Comprehensively introduces readers to the production, modifications, and applications of nanocellulose This book gives a thorough introduction to the structure, properties, surface modification, theory, mechanism of composites, and functional materials derived from nanocellulose. It also provides in-depth descriptions of plastics, composites, and functional nanomaterials specifically derived from cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose. It includes the most recent progress in developing a conceptual framework of nanocellulose, as well as its numerous applications in the design and manufacture of nanocomposites and functional nanomaterials. The book also looks at the relationship between structure and properties. Featuring contributions from many noted experts in the field, Nanocellulose: From Fundamentals to Advanced Materials examines the current status of nanocomposites based on nanocelluloses. It covers surface modification of nanocellulose in the nanocomposites development; reinforcing mechanism of cellulose nanocrystals in nanocomposites; and advanced materials based on self-organization of cellulose nanocrystals. The book studies the role of cellulose nanofibrils in nanocomposites, as well as a potential application based on colloidal properties of cellulose nanocrystals. It also offers strategies to explore biomedical applications of nanocellulose. Provides comprehensive knowledge on the topic of nanocellulose, including the preparation, structure, properties, surface modification and strategy Covers new reports on the application of nanocellulose Summarizes three kinds of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) and their production, modification, and applications Nanocellulose: From Fundamentals to Advanced Materials is a useful resource for specialist researchers of chemistry, materials, and nanotechnology science, as well as for researchers and students of the subject.
The first book dedicated to the potential applications and unique properties of bacterial cellulose (BC), this seminal work covers the basic science, technology, and economic impact of this bulk chemical as well as the companies and patents that are driving the field. It reviews the biosynthesis and properties of BC, including genetics and characterization; discusses the advancing technology as it relates to product development, bioreactors, and production; and analyzes the economic impact of BC on a diverse range of industry applications, including materials and biomaterials, biological and polymer sciences, and electromechanical engineering.
Nanocellulose, a unique and promising natural material extracted from native cellulose, has received immense interest for its broad spectrum of applications owing to its remarkable physical properties, special surface chemistry, and excellent biological properties (biocompatibility, biodegradability and low toxicity). In attempts to meet the requirements of humanity's well-being, biomaterials scientists taking advantage of the structure and properties of nanocellulose aim to develop new and formerly non-existing materials with novel and multifunctional properties.This book highlights the importance of nanocellulose and reviews its synthesis, types, structure and properties. Further, it discusses various biofabrication approaches and applications of nanocellulose-based biomaterials in various fields such as the environment, biomedicine, optoelectronics, pharmaceutics, paper, renewable energy and the food industry. Devised to have a broad appeal, this book will be useful to beginners, who will appreciate its comprehensive approach, as well as active researchers, who will find the focus on recent advancements highly valuable.
Polylactic Acid-Based Nanocellulose and Cellulose Composites offers a comprehensive account of the methods for the synthesis, characterization, processing, and applications of these advanced materials. This book fills a gap in the literature as the only currently available book on this topic. This book: Describes the procedures for the extraction of cellulose materials from different sources and characterization methods adopted for analyzing their properties Covers properties, processing, and applications of PLA biocomposites made using the extracted cellulose Discusses the effect of reinforcement of cellulose on the biopolymer matrix and the enhancement of biopolymer properties Examines current status, challenges, and future outlook in biocomposite research and applications The book serves as a reference for researchers, scientists, and advanced students in polymer science and engineering and materials science who are interested in cellulose polymer composites and their applications.
Polymer Nanocomposite Materials Discover an authoritative overview of zero-, one-, and two-dimensional polymer nanomaterials Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices delivers an original and insightful treatment of polymer nanocomposite applications in energy, information, and biotechnology. The book systematically reviews the preparation and characterization of polymer nanocomposites from zero-, one-, and two-dimensional nanomaterials. The two distinguished editors have selected resources that thoroughly explore the applications of polymer nanocomposites in energy, information, and biotechnology devices like sensors, solar cells, data storage devices, and artificial synapses. Academic researchers and professional developers alike will enjoy one of the first books on the subject of this environmentally friendly and versatile new technology. Polymer Nanocomposite Materials discusses challenges associated with the devices and materials, possible strategies for future directions of the technology, and the possible commercial applications of electronic devices built on these materials. Readers will also benefit from the inclusion of: A thorough introduction to the fabrication of conductive polymer composites and their applications in sensors An exploration of biodegradable polymer nanocomposites for electronics and polymer nanocomposites for photodetectors Practical discussions of polymer nanocomposites for pressure sensors and the application of polymer nanocomposites in energy storage devices An examination of functional polymer nanocomposites for triboelectric nanogenerators and resistive switching memory Perfect for materials scientists and polymer chemists, Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices will also earn a place in the libraries of sensor developers, electrical engineers, and other professionals working in the sensor industry seeking an authoritative one-stop reference for nanocomposite applications.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 9th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2021), which was held on August 25–28, 2021 at Lviv Polytechnic National University, and was jointly organized by the Institute of Physics, the National Academy of Sciences of Ukraine, Lviv Polytechnic National University, University of Tartu (Estonia), University of Turin (Italy), Pierre and Marie Curie University (France), European Profiles S.A. (Greece), Representation of the Polish Academy of Sciences in Kyiv, University of Angers (France), Ruprecht Karl University of Heidelberg (Germany). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, and synthesis. This book’s companion volume also addresses topics such as nano-optics, energy storage, and biomedical applications.