This book introduces the reader to important aspects of the nano-hydrogels. It covers the development of hydrogels and their biology, chemistry and properties. Focus is also given to innovative characterization techniques and advances in structural design, with special emphasis on molecular structure, dynamic behavior and structural modifications of hydrogels. This book serves as a consolidated reference work for the diverse aspects of hydrogels, creating a valuable resource for students and researchers in academia and industry.
This book introduces the reader to important aspects of the nano-hydrogels. It covers the development of hydrogels and their biology, chemistry and properties. Focus is also given to innovative characterization techniques and advances in structural design, with special emphasis on molecular structure, dynamic behavior and structural modifications of hydrogels. This book serves as a consolidated reference work for the diverse aspects of hydrogels, creating a valuable resource for students and researchers in academia and industry.
Organic Materials as Smart Nanocarriers for Drug Delivery presents the latest developments in the area of organic frameworks used in pharmaceutical nanotechnology. An up-to-date overview of organic smart nanocarriers is explored, along with the different types of nanocarriers, including polymeric micelles, cyclodextrins, hydrogels, lipid nanoparticles and nanoemlusions. Written by a diverse range of international academics, this book is a valuable reference for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of organic smart nanocarriers. - Explores the most recent molecular- and structure-based applications of organic smart nanocarriers in drug delivery - Highlights different smart nanocarriers and assesses their intricate organic structural properties for improving drug delivery - Assesses how molecular organic frameworks lead to more effective drug delivery systems
This book discusses recent advances in hydrogels, including their generation and applications and presents a compendium of fundamental concepts. It highlights the most important hydrogel materials, including physical hydrogels, chemical hydrogels, and nanohydrogels and explores the development of hydrogel-based novel materials that respond to external stimuli, such as temperature, pressure, pH, light, biochemicals or magnetism, which represent a new class of intelligent materials. With their multiple cooperative functions, hydrogel-based materials exhibit different potential applications ranging from biomedical engineering to water purification systems. This book covers key topics including superabsorbent polymer hydrogel; intelligent hydrogels for drug delivery; hydrogels from catechol-conjugated materials; nanomaterials loaded hydrogel; electrospinning of hydrogels; biopolymers-based hydrogels; injectable hydrogels; interpenetrating-polymer-network hydrogels: radiation- and sonochemical synthesis of micro/nano/macroscopic hydrogels; DNA-based hydrogels; and multifunctional applications of hydrogels. It will prove a valuable resource for researchers working in industry and academia alike.
The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 10 - Polymeric Nanomaterials
Sustainable Nanocellulose and Nanohydrogels from Natural Sources explores the use of biopolymers in specific application areas such as electronics, energy, consumer goods, packaging materials, therapeutics, water treatment and engineering, and what makes the particular polymer to engage it in these applications. This is an important reference source for those who would like to learn more about how biopolymeric nanocomposites are used in sustainability and environmental protection. Biopolymers, including plant and sea-based polymers, play an important role in the formation and maintaining the stability of industrial nanocomposites; their common functions being the surface modification and protection for the highly oxidative-unstable cores, as stable base for holding multiple targets, and as a shield for the inorganic and highly toxic metals. These biopolymer-based nanocomposites are being used for applications in the electronics, automobile, construction and biomedical sectors. - Explains the major design and development techniques of novel biopolymer-based nanocomposites - Demonstrates how Nanocelluloses and Nanohydrogels are being used for environmental health and safety - Explores how biopolymer-infused nanocellulose and nanogels are less toxic than their conventional counterparts
Sustainable Hydrogels: Synthesis, Properties and Applications highlights the development of sustainable hydrogels from various perspectives and covers a range of topics, including the development and utilization of abundant and/or inexpensive biorenewable monomers to create hydrogels; the mimicry of variable properties inherent to successful commercial hydrogels; and the creation of bio-based hydrogels that are functional equivalents of fossil fuel-derived hydrogels with respect to their properties, yet are capable of benign degradation over much shorter timescales. Some of the challenges facing sustainable polymer chemistry are also discussed. - Shifts the focus from theory to practice and demonstrates how the cradle-to-cradle approach support sustainability - Includes discussion of life cycle assessments in the production and use of hydrogels - Presents various materials for the production of hydrogels
Nanotechnology can target specific agricultural problems related to plant pathology and provide new techniques for crop disease control. Plant breeders and phytopathologists are needed who can apply nanogenomics and develop nanodiagnostic technologies to accurately advance the improvement process and take advantage of the potential of genomics. This book serves as a thorough guide for researchers working with nanotechnology to address plant protection problems. Novel nanobiotechnology methods describe new plant gene transfer tools that improve crop resistance against plant diseases and increase food security. Also, quantum dots (QDs) have emerged as essential tools for fast and accurate detection of particular biological markers. Biosensors, QDs, nanostructured platforms, nanoimaging, and nanopore DNA sequencing tools have the potential to raise sensitivity, specificity, and speed in pathogen detection, thereby facilitating high-throughput analysis and providing high-quality monitoring and crop protection. Also, this book deals with the application of nanotechnology for quicker, more cost-effective, and precise diagnostic procedures of plant diseases and mycotoxins. Applications of nanotechnology in plant pests and disease control, antimicrobial mechanisms, pesticides remediation and nanotoxicity on plant ecosystem and soil microbial communities are discussed in detail. Moreover, the application of specific nanomaterials including silver, copper, carbon- or polymer-based nanomaterials and nanoemulsions are also discussed. Crops treated with safe nanofertilizers and nanopesticides will gain added value because they are free of chemical residues, decay and putative pathogens for human health, sustaining the global demand for high product quality.
This book is part of a two-volume book series that exhaustively reviews the key recent research into nanoclay reinforced polymer composites. This second volume focuses on nanoclay based nanocomposites and bionanocomposites fabrication, characterization and applications. This includes classification of nanoclay, chemical modification and processing techniques of nanocomposites. The book also provides comprehensive information about nanoclay modification and functionalization; modification of nanoclay systems, geological and mineralogical research on clays suitability; bio-nanocomposites based on nanoclays; modelling of mechanical behaviour of halloysite based composites; mechanical and thermal properties of halloysite nanocomposites; the effect of Nanoclays on gas barrier properties of polymers and modified nanocomposites. This book is a valuable reference guide for academics and industrial practitioners alike.
Nanophototherapy: Preparations and Applications provides a comprehensive overview of the various multifunctional nanoparticles used for phototherapy, with an emphasis on fundamental nanotechnology and the latest research of photothermal therapy (PTT) and photodynamic therapy (PDT). The different types of phototherapeutic nanomaterials are thoroughly described, along with their structural features and synthesis. This is the first book to cover nanomaterial-based phototherapy for both cancer and bacterial infections. It is an essential resource for researchers, academics, and professionals interested in the potential of multifunctional nanomaterials for therapeutic applications. - Overviews the types, structural features, design, and fabrication of advanced nanomaterial-based phototherapy of cancer and microbial infections - Provides fundamentals and reviews the latest research on nanomaterial-based phototherapy for the treatment of cancer and bacterial infections - Features definitions, synthesis, and characterization of various nanomaterials, such as NIR-based metals, photosensitizer-loaded nanomaterials, polymer nanoparticles, and more