This fully illustrated tutorial is provided FREE in standard PDF format as part of the NOVICE-N-NEWBIE Series of guides to assist artists in developing their professional skills. Are you new to 3D and don't have any idea about poses? This guide will introduce you to the basic information required to get started with using poses for your artwork projects. The information is covered from a DAZ Studio 4.6 perspective, but is applicable to using poses in just about any 3D software. The guide includes links to some of the products used to demonstrate what is being discussed as well as some resource links to more advanced topics for later on.
This 14-page fully illustrated tutorial is provided FREE in standard PDF format as part of the NOVICE-N-NEWBIE Series of guides to assist artists in developing their professional skills. Are you just starting out in 3D? Or have you been collecting content for years and find it hard to wade through? This guide will introduce you to some basic rules and guidelines to ease the storage, and yet more importantly, the retrieval of items in your content collection. The information is covered from a DAZ Studio 4.6 perspective, but is applicable to content for just about anything from music to software.
Through ten editions, Fox and McDonald's Introduction to Fluid Mechanics has helped students understand the physical concepts, basic principles, and analysis methods of fluid mechanics. This market-leading textbook provides a balanced, systematic approach to mastering critical concepts with the proven Fox-McDonald solution methodology. In-depth yet accessible chapters present governing equations, clearly state assumptions, and relate mathematical results to corresponding physical behavior. Emphasis is placed on the use of control volumes to support a practical, theoretically-inclusive problem-solving approach to the subject. Each comprehensive chapter includes numerous, easy-to-follow examples that illustrate good solution technique and explain challenging points. A broad range of carefully selected topics describe how to apply the governing equations to various problems, and explain physical concepts to enable students to model real-world fluid flow situations. Topics include flow measurement, dimensional analysis and similitude, flow in pipes, ducts, and open channels, fluid machinery, and more. To enhance student learning, the book incorporates numerous pedagogical features including chapter summaries and learning objectives, end-of-chapter problems, useful equations, and design and open-ended problems that encourage students to apply fluid mechanics principles to the design of devices and systems.
Galaxies, along with their underlying dark matter halos, constitute the building blocks of structure in the Universe. Of all fundamental forces, gravity is the dominant one that drives the evolution of structures from small density seeds at early times to the galaxies we see today. The interactions among myriads of stars, or dark matter particles, in a gravitating structure produce a system with fascinating connotations to thermodynamics, with some analogies and some fundamental differences. Ignacio Ferreras presents a concise introduction to extragalactic astrophysics, with emphasis on stellar dynamics, and the growth of density fluctuations in an expanding Universe. Additional chapters are devoted to smaller systems (stellar clusters) and larger ones (galaxy clusters). Fundamentals of Galaxy Dynamics, Formation and Evolution is written for advanced undergraduates and beginning postgraduate students, providing a useful tool to get up to speed in a starting research career. Some of the derivations for the most important results are presented in detail to enable students appreciate the beauty of maths as a tool to understand the workings of galaxies. Each chapter includes a set of problems to help the student advance with the material.
This is the fifth edition of a well-established textbook. It is intended to provide a thorough coverage of the fundamental principles and techniques of classical mechanics, an old subject that is at the base of all of physics, but in which there has also in recent years been rapid development. The book is aimed at undergraduate students of physics and applied mathematics. It emphasizes the basic principles, and aims to progress rapidly to the point of being able to handle physically and mathematically interesting problems, without getting bogged down in excessive formalism. Lagrangian methods are introduced at a relatively early stage, to get students to appreciate their use in simple contexts. Later chapters use Lagrangian and Hamiltonian methods extensively, but in a way that aims to be accessible to undergraduates, while including modern developments at the appropriate level of detail. The subject has been developed considerably recently while retaining a truly central role for all students of physics and applied mathematics.This edition retains all the main features of the fourth edition, including the two chapters on geometry of dynamical systems and on order and chaos, and the new appendices on conics and on dynamical systems near a critical point. The material has been somewhat expanded, in particular to contrast continuous and discrete behaviours. A further appendix has been added on routes to chaos (period-doubling) and related discrete maps. The new edition has also been revised to give more emphasis to specific examples worked out in detail.Classical Mechanics is written for undergraduate students of physics or applied mathematics. It assumes some basic prior knowledge of the fundamental concepts and reasonable familiarity with elementary differential and integral calculus.
Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel®, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly. Now in its Second Edition, Introduction to Chemical Engineering Computing is based on the author's firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including: Equations of state Chemical reaction equilibria Mass balances with recycle streams Thermodynamics and simulation of mass transfer equipment Process simulation Fluid flow in two and three dimensions All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book's accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective. Covering a broad range of disciplines and problems within chemical engineering, Introduction to Chemical Engineering Computing is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem.
A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
The first comprehensive reference on mechatronics, The Mechatronics Handbook was quickly embraced as the gold standard in the field. From washing machines, to coffeemakers, to cell phones, to the ubiquitous PC in almost every household, what, these days, doesn’t take advantage of mechatronics in its design and function? In the scant five years since the initial publication of the handbook, the latest generation of smart products has made this even more obvious. Too much material to cover in a single volume Originally a single-volume reference, the handbook has grown along with the field. The need for easy access to new material on rapid changes in technology, especially in computers and software, has made the single volume format unwieldy. The second edition is offered as two easily digestible books, making the material not only more accessible, but also more focused. Completely revised and updated, Robert Bishop’s seminal work is still the most exhaustive, state-of-the-art treatment of the field available.