Muscle Contraction

Muscle Contraction

Author: Clive R. Bagshaw

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 79

ISBN-13: 9401095396

DOWNLOAD EBOOK

The student of biolo,gical science in his final years as an undergraduate and his first years as a graduate is expected to gain some familiarity with current research at the frontiers of his discipline. New research work is published in a perplexing diversity of publications and is inevitably concerned with the minutiae of the subject. The sheer number of research journals and papers also causes confusion and difficulties of assimilation. Review articles usually presuppose a background knowledge of the field and are inevitably rather restricted in scope. There is thus a need for short but authoritative introductions to those areas of modern biological research which are either not dealt with in standard introductory textbooks or are not dealt with in sufficient detail to enable the student to go on from them to read scholarly reviews with profit. This series of books is designed to satisfy this need. The authors have been asked to produce a brief outline of their subject assuming that their readers will have read and remembered much of a standard introductory textbook of biology. This outline then sets out to provide by building on this basis, the conceptual framework within which modern research work is progressing and aims to give the reader an indication of the problems, both conceptual and practical, which must be overcome if progress is to be maintained.


Mechanism of Muscular Contraction

Mechanism of Muscular Contraction

Author: Jack A. Rall

Publisher: Springer

Published: 2014-10-21

Total Pages: 480

ISBN-13: 1493920073

DOWNLOAD EBOOK

This book describes the evolution of ideas relating to the mechanism of muscular contraction since the discovery of sliding filaments in 1954. An amazing variety of experimental techniques have been employed to investigate the mechanism of muscular contraction and relaxation. Some background of these various techniques is presented in order to gain a fuller appreciation of their strengths and weaknesses. Controversies in the muscle field are discussed along with some missed opportunities and false trails. The pathway to ATP and the high energy phosphate bond will be discussed, as well as the discovery of myosin, contraction coupling and the emergence of cell and molecular biology in the muscle field. Numerous figures from original papers are also included for readers to see the data that led to important conclusions. This book is published on behalf of the American Physiological Society by Springer. Access to APS books published with Springer is free to APS members.


The Structural Basis of Muscular Contraction

The Structural Basis of Muscular Contraction

Author: John Squire

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 704

ISBN-13: 1461331838

DOWNLOAD EBOOK

Muscular contraction provides one of the most fascinating topics for a biophysicist to study. Although muscle comprises a molecular machine whereby chemical energy is converted to mechanical work, its action in producing force is something that is readily observable in everyday life, a feature that does not apply to most other structures of biophysical inter est. In addition, muscle is so beautifully organized at the microscopic level that those important structural probes, electron microscopy (with the associated image analysis methods) and X-ray diffraction, have pro vided a wealth of information about the arrangements of the constituent proteins in a variety of muscle types. But, despite all this, the answer to the question "How does muscle work?" is still uncertain, especially with regard to the molecular events by which force is actually generated, and the question remains one of the major unsolved problems in biology. With this problem in mind, this book has been written to collect together the available evidence on the structures of the muscle fila ments and on their arrangements in different muscle cells, to extract the common structural features of these cells, and thus to attempt to define a possible series of mechanical steps that will describe at molecular resolu tion the process by which force is generated. The book cannot be considered to be an introductory text; in fact, it presents a very detailed account of muscle structure as gleaned mainly from electron microscopy and X-ray diffraction.


The Sliding-Filament Theory of Muscle Contraction

The Sliding-Filament Theory of Muscle Contraction

Author: David Aitchison Smith

Publisher: Springer

Published: 2019-02-05

Total Pages: 426

ISBN-13: 3030035263

DOWNLOAD EBOOK

Understanding the molecular mechanism of muscle contraction started with the discovery that striated muscle is composed of interdigitating filaments which slide against each other. Sliding filaments and the working-stroke mechanism provide the framework for individual myosin motors to act in parallel, generating tension and loaded shortening with an efficient use of chemical energy. Our knowledge of this exquisitely structured molecular machine has exploded in the last four decades, thanks to a bewildering array of techniques for studying intact muscle, muscle fibres, myofibrils and single myosin molecules. After reviewing the mechanical and biochemical background, this monograph shows how old and new experimental discoveries can be modelled, interpreted and incorporated into a coherent mathematical theory of contractility at the molecular level. The theory is applied to steady-state and transient phenomena in muscle fibres, wing-beat oscillations in insect flight muscle, motility assays and single-molecule experiments with optical trapping. Such a synthesis addresses major issues, most notably whether a single myosin motor is driven by a working stroke or a ratchet mechanism, how the working stroke is coupled to phosphate release, and whether one cycle of attachment is driven by the hydrolysis of one molecule of ATP. Ways in which the theory can be extended are explored in appendices. A separate theory is required for the cooperative regulation of muscle by calcium via tropomyosin and troponin on actin filaments. The book reviews the evolution of models for actin-based regulation, culminating in a model motivated by cryo-EM studies where tropomyosin protomers are linked to form a continuous flexible chain. It also explores muscle behaviour as a function of calcium level, including emergent phenomena such as spontaneous oscillatory contractions and direct myosin regulation by its regulatory light chains. Contraction models can be extended to all levels of calcium-activation by embedding them in a cooperative theory of thin-filament regulation, and a method for achieving this grand synthesis is proposed. Dr. David Aitchison Smith is a theoretical physicist with thirty years of research experience in modelling muscle contractility, in collaboration with experimental groups in different laboratories.


Botulinum Neurotoxins

Botulinum Neurotoxins

Author: Andreas Rummel

Publisher: Springer

Published: 2015-01-29

Total Pages: 0

ISBN-13: 9783642448898

DOWNLOAD EBOOK

The extremely potent substance botulinum neurotoxin (BoNT) has attracted much interest in diverse fields. Originally identified as cause for the rare but deadly disease botulism, military and terrorist intended to misuse this sophisticated molecule as biological weapon. This caused its classification as select agent category A by the Centers for Diseases Control and Prevention and the listing in the Biological and Toxin Weapons Convention. Later, the civilian use of BoNT as long acting peripheral muscle relaxant has turned this molecule into an indispensable pharmaceutical world wide with annual revenues >$1.5 billion. Also basic scientists value the botulinum neurotoxin as molecular tool for dissecting mechanisms of exocytosis. This book will cover the most recent molecular details of botulinum neurotoxin, its mechanism of action as well as its detection and application.


Muscle Biophysics

Muscle Biophysics

Author: Rassier Dilson J.E

Publisher: Springer Science & Business Media

Published: 2010-09-08

Total Pages: 360

ISBN-13: 1441963669

DOWNLOAD EBOOK

Muscle contraction has been the focus of scientific investigation for more than two centuries, and major discoveries have changed the field over the years. Early in the twentieth century, Fenn (1924, 1923) showed that the total energy liberated during a contraction (heat + work) was increased when the muscle was allowed to shorten and perform work. The result implied that chemical reactions during contractions were load-dependent. The observation underlying the “Fenn effect” was taken to a greater extent when Hill (1938) published a pivotal study showing in details the relation between heat production and the amount of muscle shortening, providing investigators with the force-velocity relation for skeletal muscles. Subsequently, two papers paved the way for the current paradigm in the field of muscle contraction. Huxley and Niedergerke (1954), and Huxley and Hanson (1954) showed that the width of the A-bands did not change during muscle stretch or activation. Contraction, previously believed to be caused by shortening of muscle filaments, was associated with sliding of the thick and thin filaments. These studies were followed by the classic paper by Huxley (1957), in which he conceptualized for the first time the cross-bridge theory; filament sliding was driven by the cyclical interactions of myosin heads (cross-bridges) with actin. The original cross-bridge theory has been revised over the years but the basic features have remained mostly intact. It now influences studies performed with molecular motors responsible for tasks as diverse as muscle contraction, cell division and vesicle transport.


Fundamentals of Anaesthesia

Fundamentals of Anaesthesia

Author: Colin Pinnock

Publisher: Cambridge University Press

Published: 2002-12

Total Pages: 990

ISBN-13: 9780521690799

DOWNLOAD EBOOK

The second edition of Fundamentals of Anaesthesia builds upon the success of the first edition, and encapsulates the modern practice of anaesthesia in a single volume. Written and edited by a team of expert contributors, it provides a comprehensive but easily readable account of all of the information required by the FRCA Primary examination candidate and has been expanded to include more detail on all topics and to include new topics now covered in the examination. As with the previous edition, presentation of information is clear and concise, with the use of lists, tables, summary boxes and line illustrations where necessary to highlight important information and aid the understanding of complex topics. Great care has been taken to ensure an unrivalled consistency of style and presentation throughout.


Mysteries in Muscle Contraction

Mysteries in Muscle Contraction

Author: Haruo Sugi

Publisher: CRC Press

Published: 2017-12-22

Total Pages: 284

ISBN-13: 1351590480

DOWNLOAD EBOOK

This book explores the author’s wide-ranging work on muscle research, which spans more than 50 years. It delves into the dogmas of muscle contraction: how the models were constructed and what was overlooked during the process, including their resulting shortcomings. The text stimulates general readers’ and researchers’ interest, highlights the author’s pioneering work on the electron microscopic recording of myosin head power and recovery strokes, and presents a frank discussion on how the original work sometimes tends to be overlooked by competing scientists, who hinder the progress of science.


Muscular Contraction

Muscular Contraction

Author: Robert Malcolm Simmons

Publisher: Cambridge University Press

Published: 1992-06-26

Total Pages: 318

ISBN-13: 9780521417747

DOWNLOAD EBOOK

Composed of a set of chapters contributed by past and present collaborators of the Nobel laureate Sir Andrew Huxley, this book covers the areas of muscle research to which Huxley made major contributions. The purpose of the book is to discuss the way that muscles work, asking questions at a fundamental level about the molecular basis of muscle tone production and muscle contraction. The majority of the chapters are concerned with muscle physiology and the relation between structure and function. The process of activation of muscles is discussed, along with the mechanism of contraction itself. Although most of the book deals with vertebrate skeletal muscle, several chapters cover cardiac muscle. Also featured are two chapters discussing Sir Andrew's achievements in both nerve and muscle physiology.