Multivariable Control for Industrial Applications
Author: John O'Reilly
Publisher: IET
Published: 1987
Total Pages: 476
ISBN-13: 9780863411175
DOWNLOAD EBOOKVery Good,No Highlights or Markup,all pages are intact.
Read and Download eBook Full
Author: John O'Reilly
Publisher: IET
Published: 1987
Total Pages: 476
ISBN-13: 9780863411175
DOWNLOAD EBOOKVery Good,No Highlights or Markup,all pages are intact.
Author: P. Albertos Pérez
Publisher: Springer Science & Business Media
Published: 2004
Total Pages: 357
ISBN-13: 1852337389
DOWNLOAD EBOOKMultivariable Control Systems focuses on control design with continual references to the practical aspects of implementation. While the concepts of multivariable control are justified, the book emphasises the need to maintain student interest and motivation over exhaustive mathematical proof. Tools of analysis and representation are always developed as methods for achieving a final control system design and evaluation. Features: • design implementation laid out using extensive reference to MATLAB®; • combined consideration of systems (plant) and signals (mainly disturbances); • step-by-step approach from the objectives of multivariable control to the solution of complete design problems. Multivariable Control Systems is an ideal text for graduate students or for final-year undergraduates looking for more depth than provided by introductory textbooks. It will also interest the control engineer practising in industry and seeking to implement robust or multivariable control solutions to plant problems.
Author: S.G. Tzafestas
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 509
ISBN-13: 9400964781
DOWNLOAD EBOOKThe foundation of linear systems theory goes back to Newton and has been followed over the years by many improvements such as linear operator theory, Laplace Transformation etc. After the World War II, feedback control theory has shown a rapid development, and standard elegant analysis and synthesis techniques have been discovered by control system workers, such as root-locus (Evans) and frequency response methods (Nyquist, Bode). These permitted a fast and efficient analysis of simple-loop control systems, but in their original "paper-and-pencil" form were not appropriate for multiple loop high-order systems. The advent of fast digital computers, together with the development of multivariable multi-loop system techniques, have eliminated these difficulties. Multivariable control theory has followed two main avenues; the optimal control approach, and the algebraic and frequency-domain control approach. An important key concept in the whole multivariable system theory is "ob servability and controllability" which revealed the exact relationships between transfer functions and the state variable representations. This has given new insight into the phenomenon of "hidden oscillations" and to the transfer function modelling of dynamic systems. The basic tool in optimal control theory is the celebrated matrix Riccati differential equation which provides the time-varying feedback gains in a linear-quadratic control system cell. Much theory presently exists for the characteristic properties and solution of this Riccati equation.
Author: Y. Zhu
Publisher: Elsevier
Published: 2001-10-08
Total Pages: 373
ISBN-13: 0080537111
DOWNLOAD EBOOKSystems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited.The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.
Author: K. Warwick
Publisher: IET
Published: 1988
Total Pages: 552
ISBN-13: 9780863411373
DOWNLOAD EBOOKIncludes: Digital signals and systems. Digital controllers for process control applications. Design of digital controllers. Control of time delay systems. State-space concepts. System identification. Introduction to discrete optimal control. Multivariable control. Adaptive control. Computer aided design for industrial control systems. Reliability and redundancy in microprocessor controllers. Software and hardware aspects of industrial controller implementations. Application of distributed digital control algorithms to power stations. An expert system for process control.
Author: Sandip K. Lahiri
Publisher: John Wiley & Sons
Published: 2017-10-23
Total Pages: 309
ISBN-13: 1119243602
DOWNLOAD EBOOKA guide to all practical aspects of building, implementing, managing, and maintaining MPC applications in industrial plants Multivariable Predictive Control: Applications in Industry provides engineers with a thorough understanding of all practical aspects of multivariate predictive control (MPC) applications, as well as expert guidance on how to derive maximum benefit from those systems. Short on theory and long on step-by-step information, it covers everything plant process engineers and control engineers need to know about building, deploying, and managing MPC applications in their companies. MPC has more than proven itself to be one the most important tools for optimising plant operations on an ongoing basis. Companies, worldwide, across a range of industries are successfully using MPC systems to optimise materials and utility consumption, reduce waste, minimise pollution, and maximise production. Unfortunately, due in part to the lack of practical references, plant engineers are often at a loss as to how to manage and maintain MPC systems once the applications have been installed and the consultants and vendors’ reps have left the plant. Written by a chemical engineer with two decades of experience in operations and technical services at petrochemical companies, this book fills that regrettable gap in the professional literature. Provides a cost-benefit analysis of typical MPC projects and reviews commercially available MPC software packages Details software implementation steps, as well as techniques for successfully evaluating and monitoring software performance once it has been installed Features case studies and real-world examples from industries, worldwide, illustrating the advantages and common pitfalls of MPC systems Describes MPC application failures in an array of companies, exposes the root causes of those failures, and offers proven safeguards and corrective measures for avoiding similar failures Multivariable Predictive Control: Applications in Industry is an indispensable resource for plant process engineers and control engineers working in chemical plants, petrochemical companies, and oil refineries in which MPC systems already are operational, or where MPC implementations are being considering.
Author: Sigurd Skogestad
Publisher: John Wiley & Sons
Published: 2005-11-04
Total Pages: 594
ISBN-13: 047001167X
DOWNLOAD EBOOKMultivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing
Author: Sergey E. Lyshevski
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 425
ISBN-13: 1461201535
DOWNLOAD EBOOKDynamics systems (living organisms, electromechanical and industrial systems, chemical and technological processes, market and ecology, and so forth) can be considered and analyzed using information and systems theories. For example, adaptive human behavior can be studied using automatic feedback control. As an illustrative example, the driver controls a car changing the speed and steer ing wheels using incoming information, such as traffic and road conditions. This book focuses on the most important and manageable topics in applied multivariable control with application to a wide class of electromechanical dynamic systems. A large spectrum of systems, familiar to electrical, mechanical, and aerospace stu dents, engineers, and scholars, are thoroughly studied to build the bridge between theory and practice as well as to illustrate the practical application of control theory through illustrative examples. It is the author's goal to write a book that can be used to teach undergraduate and graduate classes in automatic control and nonlin ear control at electrical, mechanical, and aerospace engineering departments. The book is also addressed to engineers and scholars, and the examples considered allow one to implement the theory in a great variety of industrial systems. The main purpose of this book is to help the reader grasp the nature and significance of multivariable control.
Author: Richard J. Adams
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 175
ISBN-13: 1447121112
DOWNLOAD EBOOKManual flight control system design for fighter aircraft is one of the most demanding problems in automatic control. Fighter aircraft dynamics generally have highly coupled uncertain and nonlinear dynamics. Multivariable control design techniques offer a solution to this problem. Robust Multivariable Flight Control provides the background, theory and examples for full envelope manual flight control system design. It gives a versatile framework for the application of advanced multivariable control theory to aircraft control problems. Two design case studies are presented for the manual flight control of lateral/directional axes of the VISTA-F-16 test vehicle and an F-18 trust vectoring system. They demonstrate the interplay between theory and the physical features of the systems.
Author: Qing-Guo Wang
Publisher: Springer Science & Business Media
Published: 2008-03-19
Total Pages: 272
ISBN-13: 3540784810
DOWNLOAD EBOOKThereare richtheories and designs for generalcontrolsystems,but usually, they will not lead to PID controllers. Noting that the PID controller has been the most popular one in industry for over ?fty years, we will con?ne our discussion hereto PIDcontrolonly. PID controlhasbeenanimportantresearchtopicsince 1950’s, and causes remarkable activities for the last two decades. Most of the existing works have been on the single variable PID control and its theory and design are well established, understood and practically applied. However, most industrial processes are of multivariable nature. It is not rare that the overall multivariable PID control system could fail although each PID loop may work well. Thus,demandforaddressingmultivariableinteractionsishighforsuccessful applicationofPIDcontrolinmultivariableprocessesanditisevidentfrommajor leading control companies who all rankedthe couplings of multivariable systems as the principal common problem in industry. There have been studies on PID control for multivariable processes and they provide some useful design tools for certaincases. But itis notedthat the existing worksaremainlyfor decentralized form of PID control and based on ad hoc methodologies. Obvious, multivariable PID control is much less understood and developed in comparison with the single variable case and actual need for industrial applications. Better theory and design have to be established for multivariable PID control to reach the same maturity and popularity as the single variable case. The present monograph puts together, in a single volume, a fairly comp- hensive, up-to-date and detailed treatment of PID control for multivariable p- cesses, from paring, gain and phase margins, to various design methods and applications.