Infants learn to communicate through everyday social interaction with their caregivers in a multisensory world involving sight, hearing, touch and smell. The neural and behavioural underpinnings of caregiver-infant multisensory interaction and communication, however, have remained largely unexplored in research across disciplines. This book highlights this largely uncharted territory to better understand the developmental origins of human multisensory perception and communication. It emphasizes the range and complexity of multisensory infant-caregiver interaction in the real world, and its developmental and neurophysiological characteristics. Furthermore, recent theories of brain development suggest that brain, body and the environment interact with one another on an ongoing basis, influencing each other and are constantly being influenced by each other. This volume aims to elucidate the neurophysiological, behavioural and environmental factors to better understand the nature of multisensory communication as a whole. This book was originally published as a special issue of Developmental Neuropsychology.
It has become accepted in the neuroscience community that perception and performance are quintessentially multisensory by nature. Using the full palette of modern brain imaging and neuroscience methods, The Neural Bases of Multisensory Processes details current understanding in the neural bases for these phenomena as studied across species, stages of development, and clinical statuses. Organized thematically into nine sub-sections, the book is a collection of contributions by leading scientists in the field. Chapters build generally from basic to applied, allowing readers to ascertain how fundamental science informs the clinical and applied sciences. Topics discussed include: Anatomy, essential for understanding the neural substrates of multisensory processing Neurophysiological bases and how multisensory stimuli can dramatically change the encoding processes for sensory information Combinatorial principles and modeling, focusing on efforts to gain a better mechanistic handle on multisensory operations and their network dynamics Development and plasticity Clinical manifestations and how perception and action are affected by altered sensory experience Attention and spatial representations The last sections of the book focus on naturalistic multisensory processes in three separate contexts: motion signals, multisensory contributions to the perception and generation of communication signals, and how the perception of flavor is generated. The text provides a solid introduction for newcomers and a strong overview of the current state of the field for experts.
Scholars interested in communication theory, media theory, and multimodality will discover new ideas within this text by current philosophers, while scholars of sensory studies will learn how their field can be extended to communication and media.
We perceive and understand our environment using many sensory systems-vision, touch, hearing, taste, smell, and proprioception. These multiple sensory modalities give us complementary sources of information about the environment. This book explores how we develop the ability to integrate our senses.
Most of the time people perceive using multiple senses. Out walking, we see colors and motion, hear chatter and footsteps, smell petrichor after rain, feel a breeze or the brush of a shoulder. We use our senses together to navigate and learn about the world. In spite of this, scientists and philosophers alike have merely focused on one sense at a time. Nearly every theory of perception is unisensory. This book instead offers a revisionist multisensory philosophy of perception. Casey O'Callaghan considers how our senses work together, in contrast with how they work separately and independently, and how one sense can impact another, leading to surprising perceptual illusions. The joint use of multiple senses, he argues, enables novel forms of perception and experience, such as multisensory rhythms, motions, and flavors that enrich aesthetic experiences of music, dance, and gustatory pleasure.
The Oxford Handbook of the Philosophy of Perception is a survey by leading philosophical thinkers of contemporary issues and new thinking in philosophy of perception. It includes sections on the history of the subject, introductions to contemporary issues in the epistemology, ontology and aesthetics of perception, treatments of the individual sense modalities and of the things we perceive by means of them, and a consideration of how perceptual information is integrated and consolidated. New analytic tools and applications to other areas of philosophy are discussed in depth. Each of the forty-five entries is written by a leading expert, some collaborating with younger figures; each seeks to introduce the reader to a broad range of issues. All contain new ideas on the topics covered; together they demonstrate the vigour and innovative zeal of a young field. The book is accessible to anybody who has an intellectual interest in issues concerning perception.
Research is suggesting that rather than our senses being independent, perception is fundamentally a multisensory experience. This handbook reviews the evidence and explores the theory of broad underlying principles that govern sensory interactions, regardless of the specific senses involved.
Since the first edition was published in 1951, The Stevens' Handbook of Experimental Psychology has been recognized as the standard reference in the field. The most recent (3rd) edition of the handbook was published in 2004, and it was a success by any measure. But the field of experimental psychology has changed in dramatic ways since then. Throughout the first 3 editions of the handbook, the changes in the field were mainly quantitative in nature. That is, the size and scope of the field grew steadily from 1951 to 2004, a trend that was reflected in the growing size of the handbook itself: the 1-volume first edition (1951) was succeeded by a 2-volume second edition (1988) and then by a 4-volume third edition (2004). Since 2004, however, this still-growing field has also changed qualitatively in the sense that, in virtually every subdomain of experimental psychology, theories of the mind have evolved into theories of the brain. Research methods in experimental psychology have changed accordingly and now include not only venerable EEG recordings (long a staple of research in psycholinguistics) but also MEG, fMRI, TMS, and single-unit recording. The trend towards neuroscience is an absolutely dramatic, worldwide phenomenon that is unlikely to ever be reversed. Thus, the era of purely behavioral experimental psychology is already long gone, even though not everyone has noticed. Experimental psychology and "cognitive neuroscience" (an umbrella term that includes behavioral neuroscience, social neuroscience and developmental neuroscience) are now inextricably intertwined. Nearly every major psychology department in the country has added cognitive neuroscientists to its ranks in recent years, and that trend is still growing. A viable handbook of experimental psychology should reflect the new reality on the ground. There is no handbook in existence today that combines basic experimental psychology and cognitive neuroscience, this despite the fact that the two fields are interrelated – and even interdependent – because they are concerned with the same issues (e.g., memory, perception, language, development, etc.). Almost all neuroscience-oriented research takes as its starting point what has been learned using behavioral methods in experimental psychology. In addition, nowadays, psychological theories increasingly take into account what has been learned about the brain (e.g., psychological models increasingly need to be neurologically plausible). These considerations explain why this edition of: The Stevens' Handbook of Experimental Psychology is now called The Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience. The title serves as a reminder that the two fields go together and as an announcement that the Stevens' Handbook covers it all. The 4th edition of the Stevens’ Handbook is a 5-volume set structured as follows: I. Learning & Memory: Elizabeth Phelps & Lila Davachi (Volume Editors) Topics include fear learning; time perception; working memory; visual object recognition; memory and future imagining; sleep and memory; emotion and memory; attention and memory; motivation and memory; inhibition in memory; education and memory; aging and memory; autobiographical memory; eyewitness memory; and category learning. II. Sensation, Perception & Attention: John Serences (Volume Editor) Topics include attention; vision; color vision; visual search; depth perception; taste; touch; olfaction; motor control; perceptual learning; audition; music perception; multisensory integration; vestibular, proprioceptive, and haptic contributions to spatial orientation; motion perception; perceptual rhythms; the interface theory of perception; perceptual organization; perception and interactive technology; perception for action. III. Language & Thought: Sharon Thompson-Schill (Volume Editor) Topics include reading; discourse and dialogue; speech production; sentence processing; bilingualism; concepts and categorization; culture and cognition; embodied cognition; creativity; reasoning; speech perception; spatial cognition; word processing; semantic memory; moral reasoning. IV. Developmental & Social Psychology: Simona Ghetti (Volume Editor) Topics include development of visual attention; self-evaluation; moral development; emotion-cognition interactions; person perception; memory; implicit social cognition; motivation group processes; development of scientific thinking; language acquisition; category and conceptual development; development of mathematical reasoning; emotion regulation; emotional development; development of theory of mind; attitudes; executive function. V. Methodology: E. J. Wagenmakers (Volume Editor) Topics include hypothesis testing and statistical inference; model comparison in psychology; mathematical modeling in cognition and cognitive neuroscience; methods and models in categorization; serial versus parallel processing; theories for discriminating signal from noise; Bayesian cognitive modeling; response time modeling; neural networks and neurocomputational modeling; methods in psychophysics analyzing neural time series data; convergent methods of memory research; models and methods for reinforcement learning; cultural consensus theory; network models for clinical psychology; the stop-signal paradigm; fmri; neural recordings; open science.
Multisensory Experiences: Where the senses meet technology takes you on a journey that goes from the fundamentals of multisensory experiences, through the relationship between the senses and technology, to what the future of those experiences may look like, and our responsibility in it.