This volume contains a selection of papers on the topics of Clifford analysis and wavelets and multiscale analysis, the latter being understood in a very wide sense. The theory of wavelets is mathematically rich and has many practical applications. Most of the articles have been written on invitation and they provide a unique collection of material, particularly relating to Clifford analysis and the theory of wavelets.
This is a uniquely comprehensive reference that summarizes the state of the art of signal processing theory and techniques for solving emerging problems in neuroscience, and which clearly presents new theory, algorithms, software and hardware tools that are specifically tailored to the nature of the neurobiological environment. It gives a broad overview of the basic principles, theories and methods in statistical signal processing for basic and applied neuroscience problems.Written by experts in the field, the book is an ideal reference for researchers working in the field of neural engineering, neural interface, computational neuroscience, neuroinformatics, neuropsychology and neural physiology. By giving a broad overview of the basic principles, theories and methods, it is also an ideal introduction to statistical signal processing in neuroscience. - A comprehensive overview of the specific problems in neuroscience that require application of existing and development of new theory, techniques, and technology by the signal processing community - Contains state-of-the-art signal processing, information theory, and machine learning algorithms and techniques for neuroscience research - Presents quantitative and information-driven science that has been, or can be, applied to basic and translational neuroscience problems
Since its emergence as an important research area in the early 1980s, the topic of wavelets has undergone tremendous development on both theoretical and applied fronts. Myriad research and survey papers and monographs have been published on the subject, documenting different areas of applications such as sound and image processing, denoising, data compression, tomography, and medical imaging. The study of wavelets remains a very active field of research, and many of its central techniques and ideas have evolved into new and promising research areas. This volume, a collection of invited contributions developed from talks at an international conference on wavelets, is divided into three parts: Part I is devoted to the mathematical theory of wavelets and features several papers on wavelet sets and the construction of wavelet bases in different settings. Part II looks at the use of multiscale harmonic analysis for understanding the geometry of large data sets and extracting information from them. Part III focuses on applications of wavelet theory to the study of several real-world problems. Overall, the book is an excellent reference for graduate students, researchers, and practitioners in theoretical and applied mathematics, or in engineering.
Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory.
It is probably true quite generally that in the history of human thinking the most fruitful developments frequently take place at those points where two different lines of thought meet. Hence, if they actually meet, that is, if they are at least so much related to each other that a real interaction can take place, then one may hope that new and interesting developments may follow. Werner Heisenberg This volume contains papers presented at the August 1992 NATO Advanced Study Institute on Wavelets and Their Applications. The conference was held at the beautiful Il Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy. Once again we gathered at this idyllic spot to explore and extend the reciprocity between mathematics and engineering. The dynamic interaction between world-renowned scientists from the usu ally disparate communities of pure mathematicians and applied scientists, which occurred at our 1989 and 1991 ASI's, continued at this meeting. Wavelet theory and technology is in an important growth stage at which theoretical and practical results are being compared with existing methods. There have been spectacular wavelet successes and sobering comparisons with traditional ideas-but still there is a wide expanse of scientific problems to explore. Since these problems lie at the forefront of both pure mathematics and applied science, our NATO ASI was especially pertinent at this time.
This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.
This long-awaited update of Meyer's Wavelets: Algorithms and Applications includes completely new chapters on four topics: wavelets and the study of turbulence, wavelets and fractals (which includes an analysis of Riemann's nondifferentiable function), data compression, and wavelets in astronomy. The chapter on data compression was the original motivation for this revised edition, and it contains up-to-date information on the interplay between wavelets and nonlinear approximation. The other chapters have been rewritten with comments, references, historical notes, and new material. Four appendices have been added: a primer on filters, key results (with proofs) about the wavelet transform, a complete discussion of a counterexample to the Marr-Mallat conjecture on zero-crossings, and a brief introduction to H?lder and Besov spaces. In addition, all of the figures have been redrawn, and the references have been expanded to a comprehensive list of over 260 entries. The book includes several new results that have not appeared elsewhere.
Multirate Statistical Signal Processing introduces a statistical theory for extracting information from related signals with different sampling rates. This new theory generalizes the conventional deterministic theory of multirate systems beyond many of its constraints. Further, it allows for the formulation and solution of new problems: spectrum estimation, time-delay estimation and sensor fusion in the realm of multirate signal processing. This self-contained book presents background material, potential applications and leading-edge research.