Multiscale Simulations for Electrochemical Devices

Multiscale Simulations for Electrochemical Devices

Author: Ryoji Asahi

Publisher: CRC Press

Published: 2020-01-03

Total Pages: 330

ISBN-13: 1000021416

DOWNLOAD EBOOK

Environmental protection and sustainability are major concerns in today’s world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries, and artificial photosynthesis, is vital for solving environmental problems. A practical device requires designing of materials and operational systems; however, a multidisciplinary subject covering microscopic physics and chemistry as well as macroscopic device properties is absent. In this situation, multiscale simulations play an important role. This book compiles and details cutting-edge research and development of atomistic, nanoscale, microscale, and macroscale computational modeling for various electrochemical devices, including hydrogen storage, Li-ion batteries, fuel cells, and artificial photocatalysis. The authors have been involved in the development of energy materials and devices for many years. In each chapter, after reviewing the calculation methods commonly used in the field, the authors focus on a specific computational approach that is applied to a realistic problem crucial for device improvement. They introduce the simulation technique not only as an analysis tool to explain experimental results but also as a design tool in the scale of interest. At the end of each chapter, a future perspective is added as a guide for the extension of research. Therefore, this book is suitable as a textbook or a reference on multiscale simulations and will appeal to anyone interested in learning practical simulations and applying them to problems in the development of frontier and futuristic electrochemical devices.


Multiscale Simulations for Electrochemical Devices

Multiscale Simulations for Electrochemical Devices

Author: Ryoji Asahi

Publisher: CRC Press

Published: 2020-01-03

Total Pages: 232

ISBN-13: 1000021793

DOWNLOAD EBOOK

Environmental protection and sustainability are major concerns in today’s world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries, and artificial photosynthesis, is vital for solving environmental problems. A practical device requires designing of materials and operational systems; however, a multidisciplinary subject covering microscopic physics and chemistry as well as macroscopic device properties is absent. In this situation, multiscale simulations play an important role. This book compiles and details cutting-edge research and development of atomistic, nanoscale, microscale, and macroscale computational modeling for various electrochemical devices, including hydrogen storage, Li-ion batteries, fuel cells, and artificial photocatalysis. The authors have been involved in the development of energy materials and devices for many years. In each chapter, after reviewing the calculation methods commonly used in the field, the authors focus on a specific computational approach that is applied to a realistic problem crucial for device improvement. They introduce the simulation technique not only as an analysis tool to explain experimental results but also as a design tool in the scale of interest. At the end of each chapter, a future perspective is added as a guide for the extension of research. Therefore, this book is suitable as a textbook or a reference on multiscale simulations and will appeal to anyone interested in learning practical simulations and applying them to problems in the development of frontier and futuristic electrochemical devices.


Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Author: Alejandro A. Franco

Publisher: Springer

Published: 2015-11-12

Total Pages: 253

ISBN-13: 1447156773

DOWNLOAD EBOOK

The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.


Electrocatalysis

Electrocatalysis

Author: Richard C. Alkire

Publisher: John Wiley & Sons

Published: 2013-12-16

Total Pages: 315

ISBN-13: 3527680454

DOWNLOAD EBOOK

Catalysts speed up a chemical reaction or allow for reactions to take place that would not otherwise occur. The chemical nature of a catalyst and its structure are crucial for interactions with reaction intermediates. An electrocatalyst is used in an electrochemical reaction, for example in a fuel cell to produce electricity. In this case, reaction rates are also dependent on the electrode potential and the structure of the electrical double-layer. This work provides a valuable overview of this rapidly developing field by focusing on the aspects that drive the research of today and tomorrow. Key topics are discussed by leading experts, making this book a must-have for many scientists of the field with backgrounds in different disciplines, including chemistry, physics, biochemistry, engineering as well as surface and materials science. This book is volume XIV in the series "Advances in Electrochemical Sciences and Engineering".


Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems

Author: Marko M. Melander

Publisher: John Wiley & Sons

Published: 2021-09-09

Total Pages: 372

ISBN-13: 1119605636

DOWNLOAD EBOOK

Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.


Advances in Batteries for Medium and Large-Scale Energy Storage

Advances in Batteries for Medium and Large-Scale Energy Storage

Author: C Menictas

Publisher: Elsevier

Published: 2014-12-09

Total Pages: 635

ISBN-13: 1782420223

DOWNLOAD EBOOK

As energy produced from renewable sources is increasingly integrated into the electricity grid, interest in energy storage technologies for grid stabilisation is growing. This book reviews advances in battery technologies and applications for medium and large-scale energy storage. Chapters address advances in nickel, sodium and lithium-based batteries. Other chapters review other emerging battery technologies such as metal-air batteries and flow batteries. The final section of the book discuses design considerations and applications of batteries in remote locations and for grid-scale storage. - Reviews advances in battery technologies and applications for medium and large-scale energy storage - Examines battery types, including zing-based, lithium-air and vanadium redox flow batteries - Analyses design issues and applications of these technologies


Encyclopedia of Interfacial Chemistry

Encyclopedia of Interfacial Chemistry

Author:

Publisher: Elsevier

Published: 2018-03-29

Total Pages: 5276

ISBN-13: 0128098945

DOWNLOAD EBOOK

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions


Direct Alcohol Fuel Cells

Direct Alcohol Fuel Cells

Author: Horacio R. Corti

Publisher: Springer Science & Business Media

Published: 2013-12-02

Total Pages: 377

ISBN-13: 9400777086

DOWNLOAD EBOOK

Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications begins with an introductory overview of direct alcohol fuel cells (DAFC); it focuses on the main goals and challenges in the areas of materials development, performance, and commercialization. The preparation and the properties of the anodic catalysts used for the oxidation of methanol, higher alcohols, and alcohol tolerant cathodes are then described. The membranes used as proton conductors in DAFC are examined, as well as alkaline membranes, focusing on the electrical conductivity and alcohol permeability. The use of different kinds of carbon materials as catalyst supports, gas diffusion layers, and current collectors in DAFC is also discussed. State of the art of the modeling is used to estimate performance and durability. The closing chapter reviews the use of DAFC in portable equipment and mobile devices and features a detailed discussion on the mechanisms of component degradation which limits their durability. This book is written to facilitate the understanding of DAFC technology, applications, and future challenges. It is an excellent introduction for electrochemical and material engineers interested in small fuel cells as portable energy sources, scientists focused on materials science for energy production and storage, as well as policy-makers in the area of renewable energies.


Electrochemical Surface Modification

Electrochemical Surface Modification

Author: Richard C. Alkire

Publisher: John Wiley & Sons

Published: 2008-11-21

Total Pages: 360

ISBN-13: 3527625313

DOWNLOAD EBOOK

In this topical volume, the authors provide in-depth coverage of the vital relationship between electrochemistry and the morphology of thin films and surfaces. Clearly divided into four major sections, the book covers nanoscale dielectric films for electronic devices, superconformal film growth, electrocatalytic properties of transition metal macrocycles, and the use of synchrotron techniques in electrochemistry. All the chapters offer a concise introduction to the relevant topic, as well as supplying numerous references for easy access to further reading and the original literature. The result is must-have reading for electrochemists, physical and surface chemists and physicists, as well as materials scientists and engineers active in the field of spectroscopic methods in electrochemistry.