Multiresolution Signal and System Analysis and the Analysis and Control of Discrete-Event Dynamic Systems

Multiresolution Signal and System Analysis and the Analysis and Control of Discrete-Event Dynamic Systems

Author:

Publisher:

Published: 1994

Total Pages: 24

ISBN-13:

DOWNLOAD EBOOK

This final report summarizes research accomplishments supported by AFOSR Grant F49620-92-J-0002. Over the three-year period of support under this grant we have had considerable success in each of the several components of our research program, namely the development of multiresolution statistical approaches to problems of image analysis, the analysis of singular systems with applications in efficient processing of multidimensional data, large-scale estimation and computation in remote sensing and space-time data assimilation, multiresolution and wavelet-based methods for the detection and classification of abrupt changes in signals, and data fusion and inversion using multiresolution and wavelet-based methods. In this report we outline our accomplishments in each of these areas and also include a complete list of reports and publications describing this work. (AN).


Discrete Event Systems

Discrete Event Systems

Author: R. Boel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 489

ISBN-13: 1461544939

DOWNLOAD EBOOK

Discrete Event Systems: Analysis and Control is the proceedings of WODES2000 (the 5th Workshop on Discrete Event Systems, held in Ghent, Belgium, on August 21-23, 2000). This book provides a survey of the current state of the art in the field of modeling, analysis and control synthesis of discrete event systems, lecture notes for a mini course on sensitivity analysis for performance evaluation of timed discrete event systems, and 48 carefully selected papers covering all areas of discrete event theory and the most important applications domains. Topics include automata theory and supervisory control (12); Petri net based models for discrete event systems, and their control synthesis (11); (max,+) and timed automata models (9); applications papers related to scheduling, failure detection, and implementation of supervisory controllers (7); formal description of PLCs (6); and finally, stochastic models of discrete event systems (3).


Multiresolution Signal and Geometry Processing: Filter Banks, Wavelets, and Subdivision (Version: 2013-09-26)

Multiresolution Signal and Geometry Processing: Filter Banks, Wavelets, and Subdivision (Version: 2013-09-26)

Author: Michael D. Adams

Publisher: Michael Adams

Published: 2013-09-26

Total Pages: 580

ISBN-13: 1550585088

DOWNLOAD EBOOK

This book is intended for use in the teaching of graduate and senior undergraduate courses on multiresolution signal and geometry processing in the engineering and related disciplines. It has been used for several years for teaching purposes in the Department of Electrical and Computer Engineering at the University of Victoria and has been well received by students. This book provides a comprehensive introduction to multiresolution signal and geometry processing, with a focus on both theory and applications. The book has two main components, corresponding to multiresolution processing in the contexts of: 1) signal processing and 2) geometry processing. The signal-processing component of the book studies one-dimensional and multi-dimensional multirate systems, considering multirate structures such as sampling-rate converters, filter banks, and transmultiplexers. A particularly strong emphasis is placed on filter banks. Univariate and multivariate wavelet systems are examined, with the biorthogonal and orthonormal cases both being considered. The relationship between filter banks and wavelet systems is established. Several applications of filter banks and wavelets in signal processing are covered, including signal coding, image compression, and noise reduction. For readers interested in image compression, a detailed overview of the JPEG-2000 standard is also provided. Some other applications of multirate systems are considered, such as transmultiplexers for communication systems (e.g., multicarrier modulation). The geometry-processing component of the book studies subdivision surfaces and subdivision wavelets. Some mathematical background relating to geometry processing is provided, including topics such as homogeneous coordinate transformations, manifolds, surface representations, and polygon meshes. Several subdivision schemes are examined in detail, including the Loop, Kobbelt sqrt(3), and Catmull-Clark methods. The application of subdivision surfaces in computer graphics is considered. A detailed introduction to functional analysis is provided, for those who would like a deeper understanding of the mathematics underlying wavelets and filter banks. For those who are interested in software applications of the material covered in the book, appendices are included that introduce the CGAL and OpenGL libraries. Also, an appendix on the SPL library (which was developed for use with this book) is included. Throughout the book, many worked-through examples are provided. Problem sets are also provided for each major topic covered.


Continuous and Discrete Signal and System Analysis

Continuous and Discrete Signal and System Analysis

Author: Clare D. McGillem

Publisher: Oxford University Press, USA

Published: 1991

Total Pages: 520

ISBN-13:

DOWNLOAD EBOOK

This Third Edition of a proven text presents the most widely used techniques of signal and systems analysis with superb coverage of devices. Intended for junior and senior students with basic calculus, this text features a clear organization of topics beginning with convolution, then moves to unusually extensive coverage of Fourier transforms. There are generous examples of discrete system applications that students can easily follow. The second half of the text supplies broad coverage of one- and two-sided Laplace transforms and analysis of discrete signals and systems by means of the z-transform. Students will benefit from state space material that has been expanded and rearranged to present the discrete case first, as well as an expanded learning system including solutions to all exercises plus an expanded appendix table with easy access to frequently encountered mathematical relationships used in signal analysis.


Perturbation Analysis of Discrete Event Dynamic Systems

Perturbation Analysis of Discrete Event Dynamic Systems

Author: Yu-Chi (Larry) Ho

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 449

ISBN-13: 1461540240

DOWNLOAD EBOOK

Dynamic Systems (DEDS) are almost endless: military C31 Ilogistic systems, the emergency ward of a metropolitan hospital, back offices of large insurance and brokerage fums, service and spare part operations of multinational fums . . . . the point is the pervasive nature of such systems in the daily life of human beings. Yet DEDS is a relatively new phenomenon in dynamic systems studies. From the days of Galileo to Newton to quantum mechanics and cosmology of the present, dynamic systems in nature are primarily differential equations based and time driven. A large literature and endless success stories have been built up on such Continuous Variable Dynamic Systems (CVDS). It is, however, equally clear that DEDS are fundamentally different from CVDS. They are event driven, asynchronous, mostly man-made and only became significant during the past generation. Increasingly, however, it can be argued that in the modem world our lives are being impacted by and dependent upon the efficient operations of such DEDS. Yet compared to the successful paradigm of differential equations for CVDS the mathematical modelling of DEDS is in its infancy. Nor are there as many successful and established techniques for their analysis and synthesis. The purpose of this series is to promote the study and understanding of the modelling, analysis, control, and management of DEDS. The idea of the series came from editing a special issue of the Proceedings of IEEE on DEOS during 1988.


Introduction to Discrete Event Systems

Introduction to Discrete Event Systems

Author: Christos G. Cassandras

Publisher: Springer Science & Business Media

Published: 2009-12-14

Total Pages: 781

ISBN-13: 0387333320

DOWNLOAD EBOOK

Introduction to Discrete Event Systems is a comprehensive introduction to the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queuing theory, discrete-event simulation, and concurrent estimation techniques. This edition includes recent research results pertaining to the diagnosis of discrete event systems, decentralized supervisory control, and interval-based timed automata and hybrid automata models.


Signals and Systems

Signals and Systems

Author: Baolong Guo

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-09-24

Total Pages: 331

ISBN-13: 3110592967

DOWNLOAD EBOOK

A compact overview on signals and systems, with emphasis on analysis of continuous and discrete systems in time domain. Frequency-domain analysis, transform analysis and state-space analysis are also discussed in detail. With abundant examples and exercises to facilitate learning, it is an ideal texts for graduate students and lecturers in signal processing, and communication engineering.


Signals and Systems (Edition 3.0)

Signals and Systems (Edition 3.0)

Author: Michael D. Adams

Publisher: Michael Adams

Published: 2020-12-15

Total Pages: 728

ISBN-13: 1550586742

DOWNLOAD EBOOK

This book is intended for use in teaching undergraduate courses on continuous-time and/or discrete-time signals and systems in engineering (and related) disciplines. It provides a detailed introduction to continuous-time and discrete-time signals and systems, with a focus on both theory and applications. The mathematics underlying signals and systems is presented, including topics such as: signal properties, elementary signals, system properties, continuous-time and discrete-time linear time-invariant systems, convolution, continuous-time and discrete-time Fourier series, the continuous-time and discrete-time Fourier transforms, frequency spectra, and the bilateral and unilateral Laplace and z transforms. Applications of the theory are also explored, including: filtering, equalization, amplitude modulation, sampling, feedback control systems, circuit analysis, Laplace-domain techniques for solving differential equations, and z-domain techniques for solving difference equations. Other supplemental material is also included, such as: a detailed introduction to MATLAB, a review of complex analysis, an introduction to partial fraction expansions, an exploration of time-domain techniques for solving differential equations, and information on online video-lecture content for material covered in the book. Throughout the book, many worked-through examples are provided. Problem sets are also provided for each major topic covered.