Multiplicative Invariant Theory

Multiplicative Invariant Theory

Author: Martin Lorenz

Publisher: Springer Science & Business Media

Published: 2005-03-10

Total Pages: 200

ISBN-13: 9783540243236

DOWNLOAD EBOOK

Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory.


Multiplicative Invariant Theory

Multiplicative Invariant Theory

Author: Martin Lorenz

Publisher: Springer Science & Business Media

Published: 2005-12-08

Total Pages: 179

ISBN-13: 3540273581

DOWNLOAD EBOOK

Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory.


Computational Invariant Theory

Computational Invariant Theory

Author: Harm Derksen

Publisher: Springer

Published: 2015-12-23

Total Pages: 387

ISBN-13: 3662484226

DOWNLOAD EBOOK

This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest. More than ten years after the first publication of the book, the second edition now provides a major update and covers many recent developments in the field. Among the roughly 100 added pages there are two appendices, authored by Vladimi r Popov, and an addendum by Norbert A'Campo and Vladimir Popov.


Lectures on Invariant Theory

Lectures on Invariant Theory

Author: Igor Dolgachev

Publisher: Cambridge University Press

Published: 2003-08-07

Total Pages: 244

ISBN-13: 9780521525480

DOWNLOAD EBOOK

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.


Modular Invariant Theory

Modular Invariant Theory

Author: H.E.A. Eddy Campbell

Publisher: Springer Science & Business Media

Published: 2011-01-12

Total Pages: 233

ISBN-13: 3642174043

DOWNLOAD EBOOK

This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group, a theory that is more complicated than the study of the classical non-modular case. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers—an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.


L2-Invariants: Theory and Applications to Geometry and K-Theory

L2-Invariants: Theory and Applications to Geometry and K-Theory

Author: Wolfgang Lück

Publisher: Springer Science & Business Media

Published: 2002-08-06

Total Pages: 624

ISBN-13: 9783540435662

DOWNLOAD EBOOK

In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.


Multiplicative Ideal Theory and Factorization Theory

Multiplicative Ideal Theory and Factorization Theory

Author: Scott Chapman

Publisher: Springer

Published: 2016-07-30

Total Pages: 0

ISBN-13: 9783319388533

DOWNLOAD EBOOK

This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22–26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prüfer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.


Multiplicative Ideal Theory and Factorization Theory

Multiplicative Ideal Theory and Factorization Theory

Author: Scott Chapman

Publisher: Springer

Published: 2016-07-29

Total Pages: 414

ISBN-13: 331938855X

DOWNLOAD EBOOK

This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22–26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prüfer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.


Invariant Theory in All Characteristics

Invariant Theory in All Characteristics

Author: Harold Edward Alexander Eddy Campbell

Publisher: American Mathematical Soc.

Published:

Total Pages: 308

ISBN-13: 9780821870303

DOWNLOAD EBOOK

This volume includes the proceedings of a workshop on Invariant Theory held at Queen's University (Ontario). The workshop was part of the theme year held under the auspices of the Centre de recherches mathematiques (CRM) in Montreal. The gathering brought together two communities of researchers: those working in characteristic 0 and those working in positive characteristic. The book contains three types of papers: survey articles providing introductions to computational invarianttheory, modular invariant theory of finite groups, and the invariant theory of Lie groups; expository works recounting recent research in these three areas and beyond; and open problems of current interest. The book is suitable for graduate students and researchers working in invarianttheory.


Algorithms in Invariant Theory

Algorithms in Invariant Theory

Author: Bernd Sturmfels

Publisher: Springer Science & Business Media

Published: 2008-06-17

Total Pages: 202

ISBN-13: 3211774173

DOWNLOAD EBOOK

This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.