Multiplicative Differential Equations: Volume I is the first part of a comprehensive approach to the subject. It continues a series of books written by the authors on multiplicative, geometric approaches to key mathematical topics. This volume begins with a basic introduction to multiplicative differential equations and then moves on to first- and second-order equations, as well as the question of existence and uniqueness of solutions. Each chapter ends with a section of practical problems. The book is accessible to graduate students and researchers in mathematics, physics, engineering and biology.
Multiplicative Differential Equations: Volume II is the second part of a comprehensive approach to the subject. It continues a series of books written by the authors on multiplicative, geometric approaches to key mathematical topics. This volume is devoted to the theory of multiplicative differential systems. The asymptotic behavior of the solutions of such systems is studied. Stability theory for multiplicative linear and nonlinear systems is introduced and boundary value problems for second-order multiplicative linear and nonlinear equations are explored. The authors also present first-order multiplicative partial differential equations. Each chapter ends with a section of practical problems. The text is accessible to graduate students and researchers in mathematics, physics, engineering and biology.
The non-Newtonian calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus of Newton and Leibniz. It may well be that these calculi can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.
Multiplicative Partial Differential Equations presents an introduction to the theory of multiplicative partial differential equations (MPDEs). It is suitable for all types of basic courses on MPDEs. The author’s aim is to present a clear and well-organized treatment of the concept behind the development of mathematics and solution techniques. The text material of this book is presented in a highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. Features Includes new classification and canonical forms of second-order MPDEs Proposes a new technique to solving the multiplicative wave equation such as the method of separation of variables and the energy method The proposed technique in the book can be used to give the basic properties of multiplicative elliptic problems, fundamental solutions, multiplicative integral representation of multiplicative harmonic functions, mean-value formulas, strong principle of maximum, multiplicative Poisson equation, multiplicative Green functions, method of separation of variables, and theorems of Liouville and Harnack
This monograph addresses the global controllability of partial differential equations in the context of multiplicative (or bilinear) controls, which enter the model equations as coefficients. The methodology is illustrated with a variety of model equations.
This book is devoted to multiplicative analytic geometry. The book reflects recent investigations into the topic. The reader can use the main formulae for investigations of multiplicative differential equations, multiplicative integral equations and multiplicative geometry. The authors summarize the most recent contributions in this area. The goal of the authors is to bring the most recent research on the topic to capable senior undergraduate students, beginning graduate students of engineering and science and researchers in a form to advance further study. The book contains eight chapters. The chapters in the book are pedagogically organized. Each chapter concludes with a section with practical problems. Two operations, differentiation and integration, are basic in calculus and analysis. In fact, they are the infinitesimal versions of the subtraction and addition operations on numbers, respectively. In the period from 1967 till 1970, Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition to division and multiplication, and thus established a new calculus, called multiplicative calculus. Multiplicative calculus can especially be useful as a mathematical tool for economics and finance. Multiplicative Analytic Geometry builds upon multiplicative calculus and advances the theory to the topics of analytic and differential geometry.
The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.
This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.
This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.