Multi-Objective Programming and Goal Programming

Multi-Objective Programming and Goal Programming

Author: Tetsuzo Tanino

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 435

ISBN-13: 3540365109

DOWNLOAD EBOOK

This volume constitutes the proceedings of the Fifth International Conference on Multi-Objective Programming and Goal Programming: Theory & Appli cations (MOPGP'02) held in Nara, Japan on June 4-7, 2002. Eighty-two people from 16 countries attended the conference and 78 papers (including 9 plenary talks) were presented. MOPGP is an international conference within which researchers and prac titioners can meet and learn from each other about the recent development in multi-objective programming and goal programming. The participants are from different disciplines such as Optimization, Operations Research, Math ematical Programming and Multi-Criteria Decision Aid, whose common in terest is in multi-objective analysis. The first MOPGP Conference was held at Portsmouth, United Kingdom, in 1994. The subsequent conferenes were held at Torremolinos, Spain in 1996, at Quebec City, Canada in 1998, and at Katowice, Poland in 2000. The fifth conference was held at Nara, which was the capital of Japan for more than seventy years in the eighth century. During this Nara period the basis of Japanese society, or culture established itself. Nara is a beautiful place and has a number of historic monuments in the World Heritage List. The members of the International Committee of MOPGP'02 were Dylan Jones, Pekka Korhonen, Carlos Romero, Ralph Steuer and Mehrdad Tamiz.


Multiple Objective and Goal Programming

Multiple Objective and Goal Programming

Author: Tadeusz Trzaskalik

Publisher: Springer Science & Business Media

Published: 2013-06-05

Total Pages: 437

ISBN-13: 3790818127

DOWNLOAD EBOOK

The book is dedicated to multi-objective methods in decision making. The first part which is devoted to theoretical aspects, covers a broad range of multi-objective methods such as multiple linear programming, vector optimisation, fuzzy goal programming, data envelopment analysis, game theory, and dynamic programming. The reader who is interested in practical applications, will find in the remaining parts a variety of approaches applied in numerous fields including production planning, logistics, marketing, and finance.


Interactive Multiple Goal Programming

Interactive Multiple Goal Programming

Author: J. Spronk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 270

ISBN-13: 9400981651

DOWNLOAD EBOOK

1. 1. Motivation This book is based on the view-tx)int that both public and private decision making, in practice, can often be ilrproved upon by means of fonnal (nonnative) decision nodels and methods. To sane extent, the validity of this statement can be measured by the irrpressive number of su=esses of disciplines as operations research and management science. Hcwever, as witnessed by the many discussions in the professional journals in these fields, many rrodels and methods do not completely meet the requirements of decision making in prac tice. Of all possible origins of these clear shortcomings, we main-· ly focus on only one: the fact that nost of these nodels and methods are unsuitable for decision situations in which multiple and possi bly conflicting objectives playa role, because they are concentra ted on the (optimal) fulfilment of only one objective. The need to account for multiple goals was observed relatively early. Hoffman [1955], while describing 'what seem to be the prin cipal areas (in linear prograrrrning) where new ideas and new methods are needed' gives an exanple with conflicting goals. In this pro blem, the assignrrent of relative weights is a great problem for the planning staff and is 'probably not the province of the mathemati cian engaged in solving this problem'. These remarks were true pre cursors of later develor:nents. Nevertheless, the need for methods dealing with multiple goals was not widely recognized until much later.


Handbook of Critical Issues in Goal Programming

Handbook of Critical Issues in Goal Programming

Author: C. Romero

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 137

ISBN-13: 1483295117

DOWNLOAD EBOOK

Goal Programming (GP) is perhaps the oldest and most widely used approach within the Multiple Criteria Decision Making (MCDM) paradigm. GP combines the logic of optimisation in mathematical programming with the decision maker's desire to satisfy several goals. The primary purpose of this book is to identify the critical issues in GP and to demonstrate different procedures capable of avoiding or mitigating the inherent pitfalls associated with these issues. The outcome of a search of the literature shows many instances where GP models produced misleading or even erroneous results simply because of a careless formulation of the problem. Rather than being in itself a textbook, Critical Issues in Goal Programming is designed to complement existing textbooks. It will be useful to students and researchers with a basic knowledge of GP as well as to those interested in building GP models which analyse real decision problems.


Introduction to Linear Goal Programming

Introduction to Linear Goal Programming

Author: James P. Ignizio

Publisher: SAGE Publications, Incorporated

Published: 1985-11-01

Total Pages: 96

ISBN-13: 9780803925649

DOWNLOAD EBOOK

Goal programming is one of the most widely used methodologies in operations research and management science, and encompasses most classes of multiple objective programming models. Ignizio provides a concise and lucid overview of (a) the linear goal programming model, (b) a computationally efficient algorithm for solution, (c) duality and sensitivity analysis and (d) extensions of the methodology to integer as well as non-linear models.


Linear Multiobjective Programming

Linear Multiobjective Programming

Author: M. Zeleny

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 233

ISBN-13: 3642808085

DOWNLOAD EBOOK

1.1. The origin of the multiobjective problem and a short historical review The continuing search for a discovery of theories, tools and c- cepts applicable to decision-making processes has increased the complexity of problems eligible for analytical treatment. One of the more pertinent criticisms of current decision-making theory and practice is directed against the traditional approximation of multiple goal behavior of men and organizations by single, technically-convenient criterion. Reins- tementof the role of human judgment in more realistic, multiple goal se,ttings has been one of the ma~or recent developments in the literature. Consider the following simplified problem. There is a large number of people to be transported daily between two industrial areas and their adjacent residential areas. Given some budgetary and technological c- straints we would like to determine optimal transportation modes as well as the number of units of each to be scheduled for service. What is the optimal solution? Are we interested in the cheapest transportation? Do we want the fastest, the safest, the cleanest, the most profitable, the most durable? There are many criteria which are to be considered: travel times, consumer's cost, construction cost, operating cost, expected fatalities and injuries, probability of delays, etc.


Multiple Criteria Optimization

Multiple Criteria Optimization

Author: Xavier Gandibleux

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 515

ISBN-13: 0306481073

DOWNLOAD EBOOK

The generalized area of multiple criteria decision making (MCDM) can be defined as the body of methods and procedures by which the concern for multiple conflicting criteria can be formally incorporated into the analytical process. MCDM consists mostly of two branches, multiple criteria optimization and multi-criteria decision analysis (MCDA). While MCDA is typically concerned with multiple criteria problems that have a small number of alternatives often in an environment of uncertainty (location of an airport, type of drug rehabilitation program), multiple criteria optimization is typically directed at problems formulated within a mathematical programming framework, but with a stack of objectives instead of just one (river basin management, engineering component design, product distribution). It is about the most modern treatment of multiple criteria optimization that this book is concerned. I look at this book as a nicely organized and well-rounded presentation of what I view as ”new wave” topics in multiple criteria optimization. Looking back to the origins of MCDM, most people agree that it was not until about the early 1970s that multiple criteria optimization c- gealed as a field. At this time, and for about the following fifteen years, the focus was on theories of multiple objective linear programming that subsume conventional (single criterion) linear programming, algorithms for characterizing the efficient set, theoretical vector-maximum dev- opments, and interactive procedures.


Advances in Multiple Objective and Goal Programming

Advances in Multiple Objective and Goal Programming

Author: Rafael Caballero

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 396

ISBN-13: 3642468543

DOWNLOAD EBOOK

Within the field of multiple criteria decision making, this volume covers the latest advances in multiple objective and goal programming as presented at the 2nd International Conference on Multi-Objective Programming and Goal Programming, Torremolinos, Spain, May 16 - 18, 1996. The book is an undispensable source of the latest research results, presented by the leading experts of the field.


Multiple Objective Decision Making — Methods and Applications

Multiple Objective Decision Making — Methods and Applications

Author: C.-L. Hwang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 366

ISBN-13: 3642455115

DOWNLOAD EBOOK

Decision making is the process of selecting a possible course of action from all the available alternatives. In almost all such problems the multiplicity of criteria for judging the alternatives is pervasive. That is, for many such problems, the decision maker (OM) wants to attain more than one objective or goal in selecting the course of action while satisfying the constraints dictated by environment, processes, and resources. Another characteristic of these problems is that the objectives are apparently non commensurable. Mathematically, these problems can be represented as: (1. 1 ) subject to: gi(~) ~ 0, ,', . . . ,. ! where ~ is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. In literature this problem is often referred to as a vector maximum problem (VMP). Traditionally there are two approaches for solving the VMP. One of them is to optimize one of the objectives while appending the other objectives to a constraint set so that the optimal solution would satisfy these objectives at least up to a predetermined level. The problem is given as: Max f. ~) 1 (1. 2) subject to: where at is any acceptable predetermined level for objective t. The other approach is to optimize a super-objective function created by multiplying each 2 objective function with a suitable weight and then by adding them together.


Multi-Objective Optimization in Computational Intelligence: Theory and Practice

Multi-Objective Optimization in Computational Intelligence: Theory and Practice

Author: Thu Bui, Lam

Publisher: IGI Global

Published: 2008-05-31

Total Pages: 496

ISBN-13: 1599045001

DOWNLOAD EBOOK

Multi-objective optimization (MO) is a fast-developing field in computational intelligence research. Giving decision makers more options to choose from using some post-analysis preference information, there are a number of competitive MO techniques with an increasingly large number of MO real-world applications. Multi-Objective Optimization in Computational Intelligence: Theory and Practice explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues including combinatorial, real-valued, dynamic, and noisy problems. This book provides scholars, academics, and practitioners with a fundamental, comprehensive collection of research on multi-objective optimization techniques, applications, and practices.