Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105

Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105

Author: Mariano Giaquinta

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 309

ISBN-13: 1400881625

DOWNLOAD EBOOK

A classic treatment of multiple integrals in the calculus of variations and nonlinear elliptic systems from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.


Introduction to the Calculus of Variations and Control with Modern Applications

Introduction to the Calculus of Variations and Control with Modern Applications

Author: John A. Burns

Publisher: CRC Press

Published: 2013-08-28

Total Pages: 562

ISBN-13: 1466571403

DOWNLOAD EBOOK

Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions a


Minimal Surfaces II

Minimal Surfaces II

Author: Ulrich Dierkes

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 435

ISBN-13: 3662087766

DOWNLOAD EBOOK

Minimal Surfaces I is an introduction to the field of minimal surfaces and a presentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can also be useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory for nonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.


Quasiconformal Mappings and Analysis

Quasiconformal Mappings and Analysis

Author: Peter Duren

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 379

ISBN-13: 1461206057

DOWNLOAD EBOOK

In honor of Frederick W. Gehring on the occasion of his 70th birthday, an international conference on ""Quasiconformal mappings and analysis"" was held in Ann Arbor in August 1995. The 9 main speakers of the conference (Astala, Earle, Jones, Kra, Lehto, Martin, Pommerenke, Sullivan, and Vaisala) provide broad expository articles on various aspects of quasiconformal mappings and their relations to other areas of analysis. 12 other distinguished mathematicians contribute articles to this volume.


Variational Analysis

Variational Analysis

Author: R. Tyrrell Rockafellar

Publisher: Springer Science & Business Media

Published: 2009-06-26

Total Pages: 747

ISBN-13: 3642024319

DOWNLOAD EBOOK

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.