Multiple Hilbert Transforms Associated with Polynomials
Author: Joonil Kim
Publisher: American Mathematical Soc.
Published: 2015-08-21
Total Pages: 132
ISBN-13: 147041435X
DOWNLOAD EBOOKNothing provided
Read and Download eBook Full
Author: Joonil Kim
Publisher: American Mathematical Soc.
Published: 2015-08-21
Total Pages: 132
ISBN-13: 147041435X
DOWNLOAD EBOOKNothing provided
Author: J. N. Pandey
Publisher: John Wiley & Sons
Published: 2011-10-14
Total Pages: 284
ISBN-13: 1118030753
DOWNLOAD EBOOKThis book provides a modern and up-to-date treatment of the Hilberttransform of distributions and the space of periodic distributions.Taking a simple and effective approach to a complex subject, thisvolume is a first-rate textbook at the graduate level as well as anextremely useful reference for mathematicians, applied scientists,and engineers. The author, a leading authority in the field, shares with thereader many new results from his exhaustive research on the Hilberttransform of Schwartz distributions. He describes in detail how touse the Hilbert transform to solve theoretical and physicalproblems in a wide range of disciplines; these include aerofoilproblems, dispersion relations, high-energy physics, potentialtheory problems, and others. Innovative at every step, J. N. Pandey provides a new definitionfor the Hilbert transform of periodic functions, which isespecially useful for those working in the area of signalprocessing for computational purposes. This definition could alsoform the basis for a unified theory of the Hilbert transform ofperiodic, as well as nonperiodic, functions. The Hilbert transform and the approximate Hilbert transform ofperiodic functions are worked out in detail for the first time inbook form and can be used to solve Laplace's equation with periodicboundary conditions. Among the many theoretical results proved inthis book is a Paley-Wiener type theorem giving thecharacterization of functions and generalized functions whoseFourier transforms are supported in certain orthants of Rn. Placing a strong emphasis on easy application of theory andtechniques, the book generalizes the Hilbert problem in higherdimensions and solves it in function spaces as well as ingeneralized function spaces. It simplifies the one-dimensionaltransform of distributions; provides solutions to thedistributional Hilbert problems and singular integral equations;and covers the intrinsic definition of the testing function spacesand its topology. The book includes exercises and review material for all majortopics, and incorporates classical and distributional problems intothe main text. Thorough and accessible, it explores new ways to usethis important integral transform, and reinforces its value in bothmathematical research and applied science. The Hilbert transform made accessible with many new formulas anddefinitions Written by today's foremost expert on the Hilbert transform ofgeneralized functions, this combined text and reference covers theHilbert transform of distributions and the space of periodicdistributions. The author provides a consistently accessibletreatment of this advanced-level subject and teaches techniquesthat can be easily applied to theoretical and physical problemsencountered by mathematicians, applied scientists, and graduatestudents in mathematics and engineering. Introducing many new inversion formulas that have been developedand applied by the author and his research associates, the book: * Provides solutions to the distributional Hilbert problem andsingular integral equations * Focuses on the Hilbert transform of Schwartz distributions,giving intrinsic definitions of the space H(D) and its topology * Covers the Paley-Wiener theorem and provides many importanttheoretical results of importance to research mathematicians * Provides the characterization of functions and generalizedfunctions whose Fourier transforms are supported in certainorthants of Rn * Offers a new definition of the Hilbert transform of the periodicfunction that can be used for computational purposes in signalprocessing * Develops the theory of the Hilbert transform of periodicdistributions and the approximate Hilbert transform of periodicdistributions * Provides exercises at the end of each chapter--useful toprofessors in planning assignments, tests, and problems
Author: Volker Bach
Publisher: American Mathematical Soc.
Published: 2016-03-10
Total Pages: 134
ISBN-13: 1470417057
DOWNLOAD EBOOKThe authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocket-Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.
Author: Frederick W. King
Publisher: Cambridge University Press
Published: 2009-04-27
Total Pages: 661
ISBN-13: 0521517206
DOWNLOAD EBOOKThe definitive reference on Hilbert transforms covering the mathematical techniques for evaluating them, and their application.
Author: Norden E Huang
Publisher: World Scientific
Published: 2014-04-22
Total Pages: 399
ISBN-13: 981450825X
DOWNLOAD EBOOKThis book is written for scientists and engineers who use HHT (Hilbert-Huang Transform) to analyze data from nonlinear and non-stationary processes. It can be treated as a HHT user manual and a source of reference for HHT applications. The book contains the basic principle and method of HHT and various application examples, ranging from the correction of satellite orbit drifting to detection of failure of highway bridges.The thirteen chapters of the first edition are based on the presentations made at a mini-symposium at the Society for Industrial and Applied Mathematics in 2003. Some outstanding mathematical research problems regarding HHT development are discussed in the first three chapters. The three new chapters of the second edition reflect the latest HHT development, including ensemble empirical mode decomposition (EEMD) and modified EMD.The book also provides a platform for researchers to develop the HHT method further and to identify more applications.
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
Published: 2009-05-24
Total Pages: 367
ISBN-13: 0817646698
DOWNLOAD EBOOKThis self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.
Author: Sagun Chanillo
Publisher: Birkhäuser
Published: 2017-02-20
Total Pages: 319
ISBN-13: 3319527428
DOWNLOAD EBOOKThis collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.
Author: Charles F. Dunkl
Publisher: Cambridge University Press
Published: 2001-02-22
Total Pages: 408
ISBN-13: 0521800439
DOWNLOAD EBOOKOrthogonal polynomials of several variables, approximation theory, symmetry-group methods.
Author: Walter Gautschi
Publisher: OUP Oxford
Published: 2004-04-29
Total Pages: 312
ISBN-13: 0191545058
DOWNLOAD EBOOKThis is the first book on constructive methods for, and applications of orthogonal polynomials, and the first available collection of relevant Matlab codes. The book begins with a concise introduction to the theory of polynomials orthogonal on the real line (or a portion thereof), relative to a positive measure of integration. Topics which are particularly relevant to computation are emphasized. The second chapter develops computational methods for generating the coefficients in the basic three-term recurrence relation. The methods are of two kinds: moment-based methods and discretization methods. The former are provided with a detailed sensitivity analysis. Other topics addressed concern Cauchy integrals of orthogonal polynomials and their computation, a new discussion of modification algorithms, and the generation of Sobolev orthogonal polynomials. The final chapter deals with selected applications: the numerical evaluation of integrals, especially by Gauss-type quadrature methods, polynomial least squares approximation, moment-preserving spline approximation, and the summation of slowly convergent series. Detailed historic and bibliographic notes are appended to each chapter. The book will be of interest not only to mathematicians and numerical analysts, but also to a wide clientele of scientists and engineers who perceive a need for applying orthogonal polynomials.
Author: Frederick W. King
Publisher: Encyclopedia of Mathematics an
Published: 2009
Total Pages: 0
ISBN-13: 9780521517232
DOWNLOAD EBOOKThe definitive reference on Hilbert transforms covering the mathematical techniques for evaluating them, and their application.