In leicht verständlichem Stil erläutern die Autoren dieses Buches Anforderungen an Multiple-Access-Protokolle für den Mobilfunk. Zu Beginn werden zellulare Kommunikationssysteme der 2. und 3. Generation eingeführt. Ausführlich beschrieben werden dann MA-Protokolle für paketorientierte zellulare Systeme. Ein großer Teil der vorgestellten Resultate stammt aus eigenen Forschungsarbeiten der Autoren, u.a. zur Verbesserung der Protokolle und zur Modellierung der physikalischen OSI-Schicht.
Computer communication networks have come of age. Today, there is hardly any professional, particularly in engineering, that has not been the user of such a network. This proliferation requires the thorough understanding of the behavior of networks by those who are responsible for their operation as well as by those whose task it is to design such networks. This is probably the reason for the large number of books, monographs, and articles treating relevant issues, problems, and solutions in this field. Among all computer network architectures, those based on broadcast mul tiple access channels stand out in their uniqueness. These networks appear naturally in environments requiring user mobility where the use of any fixed wiring is impossible and a wireless channel is the only available option. Because of their desirable characteristics multiple access networks are now used even in environments where a wired point-to-point network could have been installed. The understanding of the operation of multiple access network through their performance analysis is the focus of this book.
This cutting-edge, first-of-its-kind resource gives you a comprehensive understanding of the simulation and evaluation methods used for today's mobile communication systems. Written by two highly regarded experts in the field, the book focuses on the performance of both the physical and protocol layer transmission scheme. It defines and presents several invaluable simulation tools written in MATLAB® code, along with clear examples that explain their use.
Random access represents possibly the simplest and yet one of the best known approaches for sharing a channel among several users. Since their introduction in the 1970s, random access schemes have been thoroughly studied and small variations of the pioneering Aloha protocol have since then become a key component of many communications standards, ranging from satellite networks to ad hoc and cellular scenarios. A fundamental step forward for this old paradigm has been witnessed in the past few years, with the development of new solutions, mainly based on the principles of successive interference cancellation, which made it possible to embrace constructively collisions among packets rather enduring them as a waste of resources. These new lines of research have rendered the performance of modern random access protocols competitive to that of their coordinated counterparts, paving the road for a multitude of new applications. This monograph explores the main ideas and design principles that are behind some of such novel schemes, and aims at offering to the reader an introduction to the analytical tools that can be used to model their performance. After reviewing some relevant results for the random access channel, the volume focuses on slotted solutions that combine the approach of diversity Aloha with successive interference cancellation, and discusses their optimisation based on an analogy with the theory of codes on graphs. The potential of modern random access is then further explored considering two families of schemes: the former based on physical layer network coding to resolve collisions among users, and the latter leaning on the concept of receiver diversity. Finally, the opportunities and the challenges encountered by random access solutions recently devised to operate in asynchronous, i.e., unslotted, scenarios are reviewed and discussed.
As the demand for broadband services continues to grow worldwide, traditional solutions, such as digital cable and fiber optics, are often difficult and expensive to implement, especially in rural and remote areas. The emerging WiMAX system satisfies the growing need for high data-rate applications such as voiceover IP, video conferencing, interactive gaming, and multimedia streaming. WiMAX deployments not only serve residential and enterprise users but can also be deployed as a backhaul for Wi-Fi hotspots or 3G cellular towers. By providing affordable wireless broadband access, the technology of WiMAX will revolutionize broadband communications in the developed world and bridge the digital divide in developing countries. Part of the WiMAX Handbook, this volume focuses on the technologies behind WiMAX, its performance capabilities, and its control mechanisms. The book introduces programmable baseband processors suited for WiMAX systems, describes an innovative methodology for the design of multi-band WiMAX antennas, addresses space-time block codes, and reviews space-frequency/space-time-frequency code design criteria. It also proposes a combined call admission control and scheduling scheme, focuses on the performance analysis of the IEEE 802.16 mesh mode, and analyzes the performance of both single-input-single-output and space-time-block-coded OFDM systems in mobile environments. The final section establishes a framework of an ideal reservation period controller, examines the ecosystem in which scheduling for IEEE 802.16e systems must be performed, and presents a fuzzy logic controller for admission control. With the revolutionary technology of WiMAX, the lives of many will undoubtedly improve, thereby leading to greater economic empowerment.
This unique text provides a comprehensive and systematic introduction to the theory and practice of mobile data networks. Covering basic design principles as well as analytical tools for network performance evaluation, and with a focus on system-level resource management, you will learn how state-of-the-art network design can enable you flexibly and efficiently to manage and trade-off various resources such as spectrum, energy, and infrastructure investments. Topics covered range from traditional elements such as medium access, cell deployment, capacity, handover, and interference management, to more recent cutting-edge topics such as heterogeneous networks, energy and cost-efficient network design, and a detailed introduction to LTE (4G). Numerous worked examples and exercises illustrate the key theoretical concepts and help you put your knowledge into practice, making this an essential resource whether you are a student, researcher, or practicing engineer.
With the rapidly increasing penetration of laptop computers and mobile phones, which are primarily used by mobile users to access Internet s- vices like e-mail and World Wide Web (WWW) access, support of Internet services in a mobile environment is an emerging requirement. Wireless n- works have been used for communication among fully distributed users in a multimedia environment that has the needs to provide real-time bursty traffic (such as voice or video) and data traffic with excellent reliability and service quality. To satisfy the huge wireless multimedia service demand and improve the system performance, efficient channel access methods and analytical methods must be provided. In this way very accurate models, that faithfully reproduce the stochastic behavior of multimedia wireless communication and computer networks, can be constructed. Most of these system models are discrete-time queueing systems. Queueing networks and Markov chains are commonly used for the p- formance and reliability evaluation of computer, communication, and m- ufacturing systems. Although there are quite a few books on the individual topics of queueing networks and Markov chains, we have found none that covers the topics of discrete-time and continuous-time multichannel mul- traffic queueing networks. On the other hand, the design and development of multichannel mul- hop network systems and interconnected network systems or integrated n- works of multimedia traffic require not only such average performance m- sures as the throughput or packet delay but also higher moments of traffic departures and transmission delay.
Whether the reader is the biggest technology geek or simply a computer enthusiast, this integral reference tool can shed light on the terms that'll pop up daily in the communications industry. (Computer Books - Communications/Networking).
Wireless communication has become a ubiquitous part of modern life, from global cellular telephone systems to local and even personal-area networks. This 2004 book provides a tutorial introduction to digital mobile wireless networks, illustrating theoretical underpinnings with a wide range of real-world examples. The book begins with a review of propagation phenomena, and goes on to examine channel allocation, modulation techniques, multiple access schemes, and coding techniques. GSM and IS-95 systems are reviewed and 2.5G and 3G packet-switched systems are discussed in detail. Performance analysis and accessing and scheduling techniques are covered, and the book closes with a chapter on wireless LANs and personal-area networks. Many worked examples and homework exercises are provided and a solutions manual is available for instructors. The book is an ideal text for electrical engineering and computer science students taking courses in wireless communications. It will also be an invaluable reference for practising engineers.