Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives

Author: Marius Rosu

Publisher: John Wiley & Sons

Published: 2017-12-18

Total Pages: 312

ISBN-13: 1119103444

DOWNLOAD EBOOK

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.


Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives

Author: Dr. Marius Rosu

Publisher: John Wiley & Sons

Published: 2017-11-10

Total Pages: 320

ISBN-13: 1119103479

DOWNLOAD EBOOK

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.


Modeling Power Electronics and Interfacing Energy Conversion Systems

Modeling Power Electronics and Interfacing Energy Conversion Systems

Author: M. Godoy Simoes

Publisher: John Wiley & Sons

Published: 2016-09-16

Total Pages: 345

ISBN-13: 1119058279

DOWNLOAD EBOOK

Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.


Design of Rotating Electrical Machines

Design of Rotating Electrical Machines

Author: Juha Pyrhonen

Publisher: John Wiley & Sons

Published: 2013-09-26

Total Pages: 612

ISBN-13: 1118701658

DOWNLOAD EBOOK

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.


Electrical Power Systems

Electrical Power Systems

Author: Mohamed E. El-Hawary

Publisher: John Wiley & Sons

Published: 1995-03-09

Total Pages: 808

ISBN-13: 9780780311404

DOWNLOAD EBOOK

This comprehensive textbook introduces electrical engineers to themost relevant concepts and techniques in electric power systemsengineering today. With an emphasis on practical motivations forchoosing the best design and analysis approaches, the authorcarefully integrates theory and application. Key features include more than 500 illustrations and diagrams,clearly developed procedures and application examples, importantmathematical details, coverage of both alternating and directcurrent, an additional set of solved problems at the end of eachchapter, and an historical overview of the development of electricpower systems. This book will be useful to both power engineeringstudents and professional power engineers.


Modelling and Control of Switched Reluctance Machines

Modelling and Control of Switched Reluctance Machines

Author: Rui Araújo

Publisher: BoD – Books on Demand

Published: 2020-09-09

Total Pages: 373

ISBN-13: 1789844541

DOWNLOAD EBOOK

Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators.


FACTS

FACTS

Author: Enrique Acha

Publisher: John Wiley & Sons

Published: 2004-10-22

Total Pages: 420

ISBN-13: 0470020156

DOWNLOAD EBOOK

The first book to provide comprehensive coverage of FACTS power systems modeling and simulation. * Detailed coverage of the development of FACTS controllers and guidance on the selection of appropriate equipment * Computer modelling examples of the FACTS controllers for steady-state and transient stability systems * Numerous case studies and practical examples


Electromechanical Motion Devices

Electromechanical Motion Devices

Author: Paul C. Krause

Publisher: John Wiley & Sons

Published: 2020-03-04

Total Pages: 448

ISBN-13: 1119489822

DOWNLOAD EBOOK

The updated third edition of the classic book that provides an introduction to electric machines and their emerging applications The thoroughly revised and updated third edition of Electromechanical Motion Devices contains an introduction to modern electromechanical devices and offers an understanding of the uses of electric machines in emerging applications such as in hybrid and electric vehicles. The authors—noted experts on the topic—put the focus on modern electric drive applications. The book includes basic theory, illustrative examples, and contains helpful practice problems designed to enhance comprehension. The text offers information on Tesla's rotating magnetic field, which is the foundation of reference frame theory and explores in detail the reference frame theory. The authors also review permanent-magnet ac, synchronous, and induction machines. In each chapter, the material is arranged so that if steady-state operation is the main concern, the reference frame derivation can be de-emphasized and focus placed on the steady state equations that are similar in form for all machines. This important new edition: • Features an expanded section on Power Electronics • Covers Tesla's rotating magnetic field • Contains information on the emerging applications of electric machines, and especially, modern electric drive applications • Includes online animations and a solutions manual for instructors Written for electrical engineering students and engineers working in the utility or automotive industry, Electromechanical Motion Devices offers an invaluable book for students and professionals interested in modern machine theory and applications.


Power Magnetic Devices

Power Magnetic Devices

Author: Scott D. Sudhoff

Publisher: John Wiley & Sons

Published: 2014-02-17

Total Pages: 0

ISBN-13: 9781118489994

DOWNLOAD EBOOK

Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices—including inductors, transformers, electromagnets, and rotating electric machinery—using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for inductor design so readers can start the design process. Core loss is next considered; this material is used to support transformer design. A chapter on force and torque production feeds into a chapter on electromagnet design. This is followed by chapters on rotating machinery and the design of a permanent magnet AC machine. Finally, enhancements to the design process including thermal analysis and AC conductor losses due to skin and proximity effects are set forth. Power Magnetic Devices: Focuses on the design process as it relates to power magnetic devices such as inductors, transformers, electromagnets, and rotating machinery Offers a structured design approach based on single- and multi-objective optimization Helps experienced designers take advantage of new techniques which can yield superior designs with less engineering time Provides numerous case studies throughout the book to facilitate readers’ comprehension of the analysis and design process Includes Powerpoint-slide-based student and instructor lecture notes and MATLAB-based examples, toolboxes, and design codes Designed to support the educational needs of students, Power Magnetic Devices: A Multi-Objective Design Approach also serves as a valuable reference tool for practicing engineers and designers. MATLAB examples are available via the book support site.