The model is applied to several computing examples. It is found that large deformation influences transport greatly in porous media through transport property and dimension changes so that transport and deformation should be modeled simultaneously.
Sixty-five papers cover a wide range of topics from engineering applications to theoretical developments in the areas of embankment and slope stability, underground cavity design and mining; dynamic analysis, soil and structure interaction, and coupled processes and fluid flow.
Computational modeling is an important tool for understanding and improving food processing and manufacturing. It is used for many different purposes, including process design and process optimization. However, modeling goes beyond the process and can include applications to understand and optimize food storage and the food supply chain, and to perform a life cycle analysis. Modeling Food Processing Operations provides a comprehensive overview of the various applications of modeling in conventional food processing. The needs of industry, current practices, and state-of-the-art technologies are examined, and case studies are provided. Part One provides an introduction to the topic, with a particular focus on modeling and simulation strategies in food processing operations. Part Two reviews the modeling of various food processes involving heating and cooling. These processes include: thermal inactivation; sterilization and pasteurization; drying; baking; frying; and chilled and frozen food processing, storage and display. Part Three examines the modeling of multiphase unit operations such as membrane separation, extrusion processes and food digestion, and reviews models used to optimize food distribution. - Comprehensively reviews the various applications of modeling in conventional food processing - Examines the modeling of multiphase unit operations and various food processes involving heating and cooling - Analyzes the models used to optimize food distribution
Over the last three decades, advances in modeling flow, heat, and mass transfer through a porous medium have dramatically transformed engineering applications. Comprehensive and cohesive, Handbook of Porous Media, Second Edition presents a compilation of research related to heat and mass transfer including the development of practical applications
Based on a conference on mathematical aspects of oil recovery problems, this work reports recent research on fluid flow in oil reservoirs. Particular emphasis is placed on the mathematical and numerical methods used.
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.