Design of Multiphase Reactors

Design of Multiphase Reactors

Author: Vishwas G. Pangarkar

Publisher: John Wiley & Sons

Published: 2015-01-27

Total Pages: 532

ISBN-13: 1118807561

DOWNLOAD EBOOK

Details simple design methods for multiphase reactors in the chemical process industries Includes basic aspects of transport in multiphase reactors and the importance of relatively reliable and simple procedures for predicting mass transfer parameters Details of design and scale up aspects of several important types of multiphase reactors Examples illustrated through design methodologies presenting different reactors for reactions that are industrially important Includes simple spreadsheet packages rather than complex algorithms / programs or computational aid


Multiphase Catalytic Reactors

Multiphase Catalytic Reactors

Author: Zeynep Ilsen Önsan

Publisher: John Wiley & Sons

Published: 2016-06-09

Total Pages: 399

ISBN-13: 1119248469

DOWNLOAD EBOOK

Provides a holistic approach to multiphase catalytic reactors from their modeling and design to their applications in industrial manufacturing of chemicals Covers theoretical aspects and examples of fixed-bed, fluidized-bed, trickle-bed, slurry, monolith and microchannel reactors Includes chapters covering experimental techniques and practical guidelines for lab-scale testing of multiphase reactors Includes mathematical content focused on design equations and empirical relationships characterizing different multiphase reactor types together with an assortment of computational tools Involves detailed coverage of multiphase reactor applications such as Fischer-Tropsch synthesis, fuel processing for fuel cells, hydrotreating of oil fractions and biofuels processing


Chemical Reactor Design

Chemical Reactor Design

Author: Juan A. Conesa

Publisher: John Wiley & Sons

Published: 2019-12-04

Total Pages: 350

ISBN-13: 3527346309

DOWNLOAD EBOOK

A guide to the technical and calculation problems of chemical reactor analysis, scale-up, catalytic and biochemical reactor design Chemical Reactor Design offers a guide to the myriad aspects of reactor design including the use of numerical methods for solving engineering problems. The author - a noted expert on the topic - explores the use of transfer functions to study residence time distributions, convolution and deconvolution curves for reactor characterization, forced-unsteady-state-operation, scale-up of chemical reactors, industrial catalysis, design of multiphasic reactors, biochemical reactors design, as well as the design of multiphase gas-liquid-solid reactors. Chemical Reactor Design contains several examples of calculations and it gives special emphasis on the numerical solutions of differential equations by using the finite differences approximation, which offers the background information for understanding other more complex methods. The book is designed for the chemical engineering academic community and includes case studies on mathematical modeling by using of MatLab software. This important book: - Offers an up-to-date insight into the most important developments in the field of chemical, catalytic, and biochemical reactor engineering - Contains new aspects such as the use of numerical methods for solving engineering problems, transfer functions to study residence time distributions, and more - Includes illustrative case studies on MatLab approach, with emphasis on numerical solution of differential equations using the finite differences approximation Written for chemical engineers, mechanical engineers, chemists in industry, complex chemists, bioengineers, and process engineers, Chemical Reactor Design addresses the technical and calculation problems of chemical reactor analysis, scale-up, as well as catalytic and biochemical reactor design.


Modeling of Chemical Kinetics and Reactor Design

Modeling of Chemical Kinetics and Reactor Design

Author: A. Kayode Coker

Publisher: Gulf Professional Publishing

Published: 2001-07-26

Total Pages: 1132

ISBN-13: 9780884154815

DOWNLOAD EBOOK

This reference conveys a basic understanding of chemical reactor design methodologies that incorporate both control and hazard analysis. It demonstrates how to select the best reactor for any particular chemical reaction, and how to estimate its size to determine the best operating conditions.


Chemical Reactor Modeling

Chemical Reactor Modeling

Author: Hugo A. Jakobsen

Publisher: Springer Science & Business Media

Published: 2014-04-02

Total Pages: 1589

ISBN-13: 3319050923

DOWNLOAD EBOOK

Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.


Numerical Simulation of Multiphase Reactors with Continuous Liquid

Numerical Simulation of Multiphase Reactors with Continuous Liquid

Author: Chao Yang

Publisher: Academic Press

Published: 2014-06-13

Total Pages: 309

ISBN-13: 9780080999197

DOWNLOAD EBOOK

Numerical simulation of multiphase reactors with continuous liquid phase provides current research and findings in multiphase problems, which will assist researchers and engineers to advance this field. This is an ideal reference book for readers who are interested in design and scale-up of multiphase reactors and crystallizers, and using mathematical model and numerical simulation as tools. Yang and Mao's book focuses on modeling and numerical applications directly in the chemical, petrochemical, and hydrometallurgical industries, rather than theories of multiphase flow. The content will help you to solve reacting flow problems and/or system design/optimization problems. The fundamentals and principles of flow and mass transfer in multiphase reactors with continuous liquid phase are covered, which will aid the reader's understanding of multiphase reaction engineering. Provides practical applications for using multiphase stirred tanks, reactors, and microreactors, with detailed explanation of investigation methods. Presents the most recent research efforts in this highly active field on multiphase reactors and crystallizers. Covers mathematical models, numerical methods and experimental techniques for multiphase flow and mass transfer in reactors and crystallizers.


Chemical Reactor Design and Control

Chemical Reactor Design and Control

Author: William L. Luyben

Publisher: John Wiley & Sons

Published: 2007-07-16

Total Pages: 425

ISBN-13: 0470134909

DOWNLOAD EBOOK

Chemical Reactor Design and Control uses process simulators like Matlab®, Aspen Plus, and Aspen Dynamics to study the design of chemical reactors and their dynamic control. There are numerous books that focus on steady-state reactor design. There are no books that consider practical control systems for real industrial reactors. This unique reference addresses the simultaneous design and control of chemical reactors. After a discussion of reactor basics, it: Covers three types of classical reactors: continuous stirred tank (CSTR), batch, and tubular plug flow Emphasizes temperature control and the critical impact of steady-state design on the dynamics and stability of reactors Covers chemical reactors and control problems in a plantwide environment Incorporates numerous tables and shows step-by-step calculations with equations Discusses how to use process simulators to address diverse issues and types of operations This is a practical reference for chemical engineering professionals in the process industries, professionals who work with chemical reactors, and students in undergraduate and graduate reactor design, process control, and plant design courses.


Multiphase Bioreactor Design

Multiphase Bioreactor Design

Author: Joaquim M.S. Cabral

Publisher: CRC Press

Published: 2001-09-20

Total Pages: 550

ISBN-13: 0203303040

DOWNLOAD EBOOK

Bioreaction engineering is fundamental to the optimization of biotechnological processes and the production of biochemicals by enzymes, microbial, plant and animal cells and higher organisms. A reference text for postgraduate students and researchers in biochemical engineering and bioreactor design, Multiphase Bioreactor Design describes the


Fundamentals of Chemical Reactor Engineering

Fundamentals of Chemical Reactor Engineering

Author: Timur Dogu

Publisher: John Wiley & Sons

Published: 2021-10-26

Total Pages: 356

ISBN-13: 1119755891

DOWNLOAD EBOOK

FUNDAMENTALS OF CHEMICAL REACTOR ENGINEERING A comprehensive introduction to chemical reactor engineering from an industrial perspective In Fundamentals of Chemical Reactor Engineering: A Multi-Scale Approach, a distinguished team of academics delivers a thorough introduction to foundational concepts in chemical reactor engineering. It offers readers the tools they need to develop a firm grasp of the kinetics and thermodynamics of reactions, hydrodynamics, transport processes, and heat and mass transfer resistances in a chemical reactor. This textbook describes the interaction of reacting molecules on the molecular scale and uses real-world examples to illustrate the principles of chemical reactor analysis and heterogeneous catalysis at every scale. It includes a strong focus on new approaches to process intensification, the modeling of multifunctional reactors, structured reactor types, and the importance of hydrodynamics and transport processes in a chemical reactor. With end-of-chapter problem sets and multiple open-ended case studies to promote critical thinking, this book also offers supplementary online materials and an included instructor’s manual. Readers will also find: A thorough introduction to the rate concept and species conservation equations in reactors, including chemical and flow reactors and the stoichiometric relations between reacting species A comprehensive exploration of reversible reactions and chemical equilibrium, including the thermodynamics of chemical reactions and different forms of the equilibrium constant Practical discussions of chemical kinetics and analysis of batch reactors, including batch reactor data analysis In-depth examinations of ideal flow reactors, CSTR, and plug flow reactor models Ideal for undergraduate and graduate chemical engineering students studying chemical reactor engineering, chemical engineering kinetics, heterogeneous catalysis, and reactor design, Fundamentals of Chemical Reactor Engineering is also an indispensable resource for professionals and students in food, environmental, and materials engineering.


Chemical Reactor Design and Technology

Chemical Reactor Design and Technology

Author: Hugo de Lasa

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 839

ISBN-13: 9400944004

DOWNLOAD EBOOK

Today's frustrations and anxieties resulting from two energy crises in only one decade, show us the problems and fragility of a world built on high energy consumption, accustomed to the use of cheap non-renewable energy and to the acceptance of eXisting imbalances between the resources and demands of countries. Despite all these stressing factors, our world is still hesitatins about the urgency of undertaking new and decisive research that could stabilize our future, Could this trend change in the near future? In our view, two different scenarios are possible. A renewed energy tension could take place with an unpredictable timing mostly related to political and economic factors, This could bring again scientists and technologists to a new state of shock and awaken our talents, A second interesting and beneficial scenario could result from the positive influence of a new generation of researchers that with or without immediate crisis, acting both in industry and academia, will face the challenge of developing technologies and processes to pave the way to a less vulnerable society, Because Chemical Reactor Design and Technology activities are at the heart of these required new technologies the timeliness of the NATO-Advanced Study Institute at the University of Western Ontario, London, was very appropriate.