During the last decade, researchers put a lot of effort into the development of the multicriteria decision methods (MCDM) capable of dealing with the uncertainty and vagueness of the initial information. MCDM approaches that work under the environment of the interval-valued neutrosophic sets (IVNS) demonstrate credibility for the analysis of different opinions as well as for the inconsistency of the criteria evaluation data. The novel multicriteria decision-making approach MULTIMOORA-IVNS (multi-objective optimisation by ratio analysis under interval-valued neutrosophic sets) is presented in this paper. A novel heuristic evaluation methodology HEBIN (heuristic evaluation based on interval numbers) that exploits MULTIMOORA-IVNS for the processing of the evaluation results is also presented in this research. HEBIN is able to increase the accuracy of the checklists-based heuristic evaluation and to diminish the impact of the inconsistencies caused by the evaluators. A comparison of six e-commerce websites is introduced to reveal the practicalities of the proposed multicriteria decision-making application.
(Fuzzy) rough sets are closely related to (fuzzy) topologies. Neutrosophic rough sets and neutrosophic topologies are extensions of (fuzzy) rough sets and (fuzzy) topologies, respectively. In this paper, a new type of neutrosophic rough sets is presented, and the basic properties and the relationships to neutrosophic topology are discussed.
The main aim of the article is to propose a new multiple criteria decision-making approach for selecting alternatives, the newly-developed MULTIMOOSRAL approach, which integrates advantages of the three well-known and prominent multiple-criteria decision-making methods: MOOSRA, MOORA, and MULTIMOORA. More specifically, the MULTIMOOSRAL method has been further upgraded with an approach that can be clearly seen in the well-known WASPAS and CoCoSo methods, which rely on the integration of weighted sum and weighted product approaches.
This book consists of the papers accepted after a careful review process at an international scientific meeting where the latest developments on intelligent and fuzzy systems are presented and discussed. The latest developments in both the theoretical and practical fields of the new fuzzy set extensions have been prepared by expert researchers. Contributed by participants from more than 40 different countries, this book is also a useful resource in terms of showing the levels that fuzzy and intelligent systems have reached in various countries of the world. The intended readers are intelligent and fuzzy systems researchers, lecturers, M.Sc., and Ph.D. students studying fuzzy sets and artificial intelligence. The book covers fuzzy logic theory and applications, heuristics, and metaheuristics from optimization to machine learning, from quality management to risk management, making the book an excellent source for researchers.
Serious games together with the gamified and the game-based surveys (GBS), offer an engaging way to increase citizens’ participation in urban planning projects. However, there is always the risk of untrustworthy participants, which can decrease the overall reliability of the game-based research. Trustworthiness analysis is a highly challenging task since the neuropsychology of the GBS respondents and the infinite amount of their possible in-game actions causes many uncertainties in the data analysis. The novel MCDM approach PROMETHEE-mGqNN (PROMETHEE under m-generalised q-neutrosophic numbers) is proposed in this paper as the solution to the described problem. Five criteria that might be automatically calculated from the in-game data are proposed to construct the decision matrix to identify the untrustworthy respondents. The game-based survey “Parkis” developed to assess the safety and attractiveness of the urban public park “Missionary Garden” (Vilnius, Lithuania) is proposed as the case study of this research
This book features a collection of high-quality research papers presented at International Conference on Artificial Intelligence: Theory and Applications (AITA 2023), held during 11–12 August 2023 in Bengaluru, India. The book is divided into two volumes and presents original research and review papers related to artificial intelligence and its applications in various domains including health care, finance, transportation, education, and many more.
This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.
This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.
The aim of this paper is to make a proposal for a new extension of the MULTIMOORA method extended to deal with bipolar fuzzy sets. Bipolar fuzzy sets are proposed as an extension of classical fuzzy sets in order to enable solving a particular class of decision-making problems. Unlike other extensions of the fuzzy set of theory, bipolar fuzzy sets introduce a positivemembership function, which denotes the satisfaction degree of the element x to the property corresponding to the bipolar-valued fuzzy set, and the negative membership function, which denotes the degree of the satisfaction of the element x to some implicit counter-property corresponding to the bipolar-valued fuzzy set. By using single-valued bipolar fuzzy numbers, the MULTIMOORA method can be more efficient for solving some specific problems whose solving requires assessment and prediction. The suitability of the proposed approach is presented through an example.