Multi-objective Optimal Design of Control Systems

Multi-objective Optimal Design of Control Systems

Author:

Publisher:

Published: 2016

Total Pages: 210

ISBN-13:

DOWNLOAD EBOOK

Feedback controls are usually designed to achieve multiple and often conflicting performance goals. These incommensurable objectives can be found in both time and frequency domains. For instance, one may want to design a control system such that the closed-loop system response to a step input has a minimum percentage overshoot, peak time, rise time, settling time, tracking error, and control effort. Another designer may want the controlled system to have a maximum crossover frequency, maximum phase margin and minimum steady-state error . However, Most of these objectives cannot be achieved concurrently. Therefore, trade-offs have to be made when the design objective space includes two or more conflicting objectives. These compromise solutions can be found by techniques called multi-objective optimization algorithms. Unlike the single optimization methods which return only a single solution, the multi-objective optimization algorithms return a set of solutions called the Pareto set and a set of the corresponding objective function values called the Pareto front. In this thesis, we present a multi-objective optimal (MOO) design of linear and nonlinear control systems using two algorithms: the non-dominated sorting genetic algorithm (NSGA-II) and a multi-objective optimization algorithm based on the simple cell mapping. The NSGA-II is one of the most popular methods in solving multi-objective optimization problems (MOPs). The cell mapping methods were originated by Hsu in 1980s for global analysis of nonlinear dynamical systems that can have multiple steady-state responses including equilibrium states, periodic motions, and chaotic attractors. However, this method can be also used also to solve multi-objective optimization problems by using a direct search method that can steer the search into any pre-selected direction in the objective space. Four case studies of robust multi-objective/many-objective optimal control design are introduced. In the first case, the NSGA-II is used to design the gains of a PID (proportional-integral-derivative) control and an observer simultaneously. The optimal design takes into account the stability robustness of both the control system and the estimator at the same time. Furthermore, the closed-loop system's robustness against external disturbances and measurement noises are included in the objective space. The second case study investigates the MOO design of an active control system applied to an under-actuated bogie system of high speed trains using the NSGA-II. Three conflicting objectives are considered in the design: the controlled system relative stability, disturbance rejection and control energy consumption. The performance of the Pareto optimal controls is tested against the train speed and wheel-rail contact conicity, which have huge impact on the bogie lateral stability. The third case addresses the MOO design of an adaptive sliding mode control for nonlinear dynamic systems. Minimizing the rise time, control energy consumption, and tracking integral absolute error and maximizing the disturbance rejection efficiency are the objectives of the design. The solution of the MOP results in a large number of trade-off solutions. Therefore, we also introduce a post-processing algorithm that can help the decision-maker to choose from the many available options in the Pareto set. Since the PID controls are the most used control algorithm in industry and usually experience time delay, a MOO design of a time-delayed PID control applied to a nonlinear system is presented as the fourth case study. The SCM is used in the solution of this problem. The peak time, overshoot and the tracking error are considered as design objectives and the design parameters are the PID controller gains.


Feedback Systems

Feedback Systems

Author: Karl Johan Åström

Publisher: Princeton University Press

Published: 2021-02-02

Total Pages:

ISBN-13: 069121347X

DOWNLOAD EBOOK

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory


Engineering Design Optimization

Engineering Design Optimization

Author: Joaquim R. R. A. Martins

Publisher: Cambridge University Press

Published: 2021-11-18

Total Pages: 653

ISBN-13: 110898861X

DOWNLOAD EBOOK

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.


Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions

Author: Holger Babinsky

Publisher: Cambridge University Press

Published: 2011-09-12

Total Pages: 481

ISBN-13: 1139498649

DOWNLOAD EBOOK

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.


Advances in Multidisciplinary Analysis and Optimization

Advances in Multidisciplinary Analysis and Optimization

Author: Raviprakash R. Salagame

Publisher: Springer Nature

Published: 2020-08-10

Total Pages: 319

ISBN-13: 9811554323

DOWNLOAD EBOOK

This volume contains select papers presented during the 2nd National Conference on Multidisciplinary Analysis and Optimization. It discusses new developments at the core of optimization methods and its application in multiple applications. The papers showcase fundamental problems and applications which include domains such as aerospace, automotive and industrial sectors. The variety of topics and diversity of insights presented in the general field of optimization and its use in design for different applications will be of interest to researchers in academia or industry.


A Practical Approach to Robustness Analysis with Aeronautical Applications

A Practical Approach to Robustness Analysis with Aeronautical Applications

Author: Gilles Ferreres

Publisher: Springer Science & Business Media

Published: 1999-09-30

Total Pages: 213

ISBN-13: 0306462834

DOWNLOAD EBOOK

The purpose of A Practical Approach to Robustness Analysis with Aeronautical Applications is twofold. First, it is to introduce as clearly as possible the mu framework, while the second is to emphasize its practical usefulness. To this aim, classical and advanced mu tools are first presented, then applied to a range of engineering problems, namely a missile, a large rigid or flexible transport aircraft and a highly flexible telescope mock-up.


Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

Author:

Publisher:

Published: 2002

Total Pages: 24

ISBN-13:

DOWNLOAD EBOOK

A small-scale, instrumented research aircraft was flown to investigate the flight characteristics of inflatable wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program.